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Abstract

This research aims mainly to solve an inverse problem arising in convex opti-

mization.

(P){maxf(m) . Az = C(A),

x
where f is a strictly increasing funnction with respect to each coordinate of the
vector x, the Hessian matrix D2f is negative definite on the subspace {D,f}*, f is
of class C?, A is an m x n matrix of rank m, C' : RT" — R, is homogeneous of

degree one and x € R".

We consider a maximization problem under m linear constraints, we character-
ize the solutions of this kind of problems and give necessary and sufficient conditions
for a given function in R™ to be the solution of a multi-constraints maximization

problem.



CONTENTS

1. Introduction . . . . . . . . . .. 3
2. Basic Definitions and Results . . . . . . . . . . . ... ... 6
3. Exterior Differential Calculus . . . . . . . . . . . .. ... ... ..... 9
3.1 Introduction . . . . . . . ... 9

3.2 Differential Manifolds . . . . . . .. .. ... oo 10
3.2.1 Manifolds and Atlases . . . . . ... ... ... ... .. ... 10

3.2.2 Tangent Vectors . . . . . . .. . ... Lo 11

3.2.3 Differentials and Covectors . . . . . . ... ... .. ... ... 12

3.3 Differential Forms . . . . . . .. ... 0o 14
3.4 Tensor and Wedge Products . . . . . ... ... ... ... ... ... 15
3.5 Examples of Algebraic Computation of Products . . . . . . ... ... 18
3.6 Exterior Derivative . . . . . . . . ... o 19
3.7 Examples of Algebraic Computation of Derivatives . . . .. ... .. 21



Contents 2

3.8 Lie Derivative . . . . . . . . .. 23
3.9 Integrability of Homogeneous Differential Forms . . . . . . .. . . .. 25
Single Constraint and Non-Homogeneous Models . . . . . . . .. .. ... 28
. Solution of The Inverse Problem-Main Results . . . . . . . .. ... . ... 31
5.1 Setting up The Model . . . . . . ... ... .. 31
5.2 Preliminary Results . . . . . . . . ... ... oo 34
5.3 Mathematical Integration: Necessary and Sufficient Conditions . . . . 38
5.4 Particular Case: m=n=2 . . ... ... ... ... ... ... 48
5.5 Economic Integration . . . . . . . . ..o 50

5.6 Duality . . . . . . .. 56



1. INTRODUCTION

Some inverse problems arise in microeconomic theory, in which we are required to
characterize the solution of some optimization problems, under one or many linear
constraints. The solution of the optimization problem is called the individual de-

mand function.

In the standard individual problem, the individual maximizes a function that
represents his tastes, called the utility function, under his budget constraints.
The individual demand function is fully characterized by the well known conditions
(7) homogeneity of degree zero, (ii) Walras Law, and (#i7) symmetry and negative

semi-definiteness of its substitution matrix.

The individual demand is the solution to the utility maximization problem
under the budget constraint p’z = w, where p is the price vector, and w is the

individual income, where p? is the transpose of p.

The standard utility maximization problem under the budget constraint takes

the form
P {max U) ; pla=w)

where U is utility function that satisfies certain smoothness, monotonicity, and con-
cavity conditions, and w(p) is convex and homogeneous of degree one. The solutions

of this problem are characterized in [2].
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In the general case, a multi-constraints optimization problem takes the form:
P {maxf(x) ;o Ax < C(A),

where z € R", A is m X n matrix and f and C' are some functions. Hence, we are
dealing with a multi-constraints maximization problem with linear constraints. The
solution of this problem is a function of the parameters A = (a;'-), 1,7 =1,..m. We
assume certain conditions on the functions f and C that guarantee the differentia-
bility of the solutions which we require to be at least of class C?. Our main objective
is to characterize the solutions of this type of optimization problems. We rely on the
first order conditions and optimality conditions to achieve our objective. Moreover,
we make use of the envelope theorem and the value function, V(A) = f(z(A)), of

the above problem. The inverse problem arising in this case was addressed in [3].

Such kind of problems arise in many applications especially in some economic
contexts in microeconomic theory. Economic applications to this problem will be
given in the sequel. Moreover, we will show that the results we get here generalize
well-known results in consumer theory, see [7] for a recent survey. An inverse prob-
lem arising from economic theory was also solved by Ekeland and Djitt’e [3]. We
use the indirect approach to deal with this problem. This approach depends on the
value function, V' (A).

The necessary and sufficient conditions on a given function z(A) € R” for the
existence of a value function will be given. It turns out that the necessary and
sufficient conditions will include a set of function \;; , i,7 = 1,...,m that can be
computed from z(A). The problem then is to find the objective function. This is a
duality problem.

Our problem will be split into mathematical integration problem and economic
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integration problem.

e Mathematical integration. Given a function z(A) and a family of functions
Aik, 1 < i,k < m, what are the necessary and sufficient conditions for the
existence of m + 1 functions Ay, ..., A, and V that satisfy equation

1 oV oC" ,
Bl _
A Oa )\Zk((‘?a; ’ > (1.1.1)

with Ay, = i‘—; and C(a’) = (a’)Tz(A).

e Economic integration. In addition to the mathematical integration, we
impose the following additional conditions on the functions that satisfy (1.1.1);
the functions A; are strictly positive and the function V is quasi-convex with

respect to each a’ for all i = 1,...,m.

To get the necessary and sufficient conditions for mathematical integration, we
use the techniques of exterior differential calculus that showed to be powerful for
the treatment of such problems. A good reference to these techniques is the book
by Bryant et al. [6]. We get local results; that is, the functions involved in the
integration problem are defined in a neighbourhood of some given point. We define
a family of differential forms and set up an integration problem using these forms.
The solution of this integration problem, then, requires solving a nonlinear system of
partial differential equations. The integration problem will be solved using Darboux
Theorem [(].

This thesis consists mainly of 5 chapters, where chapter 2 consists of basic
definitions and results, and chapter 3 reviews exterior differential calculus concepts.
In chapter 4 solution of single constraint and non-homogeneous models are given.
Chapter 5 contains the our main results. The main results that include the necessary
and sufficient conditions for mathematical integration are given. Then, the economic
integration problem is solved. Finally, duality problem is considered in section 6 of

this chapter.



2. BASIC DEFINITIONS AND RESULTS

In this section, we state some basic definitions and results that we need in this thesis.

Definition 1 (Homogeneous Function).

Let D be a subset of R*, f : D — R be a C' function defined on D. Then, f is
said to be homogenous of degree k € R, if for any real number t > 0, the following
condition holds

ftzt, .. ta™) =t f(2!,...,2"), VazeD.

Theorem 2.1 (Euler’s Theorem).
Let D be a subset of R®, f : D — R be a C! function defined on D, f is k-

homogenous if and only if

naf

i
— ox

(v)z" = kf(z',...,a"), VY azeD.

Definition 2 (Convex Set).
A set D CR™ is called conver if for any x,y € D, A € (0,1), the element

Ax+ (1— Ny € D.

Definition 3 (Convex Function).

Let D CR™ be a convex set. Then, f is convex function on D if
fAZ + (1 = Nxo] < Af(21) + (1= N) f(22)

for all X € [0,1] and all 1,25 € D.
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Definition 4 (Quasi-convex Function).
Let D be a subset of R", consider a function f : D — R where D is convex set.

Then f is quasi-convex on D if

AT+ (1 = N)zo] < max{f(21), f(22)}
for all A € [0,1] and all 1,29 € D.

Theorem 2.2 (Envelope Theorem for Constrained Problems).

Let x*(a) = (zi(a),...,z%(a)) denote the solution to the following problem:
max f(z;a)

s.t. gi(z;a) =0, ..., gx(z;a) =0

Let M\i(a), ..., M\e(a) be the lagrange multipliers for each constraint in this problem.

d 0
Then —f(x*(a),a = —L(z*(a), A(a),a
= (@) a) 2L (@.2a). 0
Total derivative of the original function f Partial dem’vati‘v,e of Lagrangian

Theorem 2.3 (Implicit Function Theorem).
Let X x P be an open subset of R* x R™, and let f : X x P — R"™ be C*, for k > 1.
Assume that D, f(z,p) is invertible. Let § = f(Z,p), then there are neighborhoods

U C X and W C P of T and p on which the equation f(x,p) =y uniquely defines
x as a function of p. That is, there is a function & : W — U such that:

(a) f(&(p)ip) =7 forallp e W.

(b) For each p € W, £(p) is the unique solution to f(x,p) =y lying in U. In
particular, then £(p) = .

(c) € is C* on W.

Definition 5 (Positive Definite Matrices).
A symmetric matriz A € R™™ is called positive definite if x7 Ax > 0 for all nonzero
x € R".
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Definition 6 (Positive Semidefinite Matrices).
A symmetric matriv A € R™" s called positive semidefinite if x7 Az > 0 for all

. —
x € R™ and there exists an x # 0 such that 27 Ax = 0.

Theorem 2.4. [11] Let D be an open convex subset of R™, and let f : D — R be
a C? function. Then, f is convex if and only if D*f(x) is a positive semidefinite

matriz for all x € D.

Theorem 2.5. [11] Let D be a convex subset of R™, and let f : D — R be a function.

Then, if f is convex on D, then it is also quasi-convex on D.

Theorem 2.6. [11] Let f: D — R be a C? function defined on an open convex set
D with everywhere nonzero first partial derivatives. Then, f is quasi-conver if and

only if for all x € D,
y'H(z)y >0 whenever Vf'(z)y=0

where H(x) and V f(z) are respectively the Hessian matriz, and the gradient of the
function f(x).

Theorem 2.7. [11] Suppose that f(x) is twice differentiable at . If Vf(z) = 0

and H(Z) is positive definite, then T is a local minimum.



3. EXTERIOR DIFFERENTIAL CALCULUS

3.1 Introduction

Exterior differential calculus is a mathematical tool which was developed in the
early twentieth century to solve problems in group theory and geometry, but it re-
cently turned out to be extremely useful for solving problems in the economic theory

of demands.

There are two major operations: a purely algebraic one, the exterior product
(also called the wedge product), and denoted by A, and special kind of differentiation,
called the exterior derivative, and is denoted by d. They operate on differential
forms, which are classified by their degrees: differential forms of degree 0 are just
functions, differential forms of degree 1 are analogous to vector fields, and differential
forms of degree k > 1 arise from differential forms of lower degree by taking exterior
products and/or exterior derivatives. All the machinery of differential forms and
exterior differential calculus is directed towards proving and applying two major

theorems: the Darboux theorem and the Cartan-Kahler theorem.
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3.2 Differential Manifolds

Our first goal is to define the notion of a manifold. Manifolds are, roughly speaking,
abstract surfaces that locally look like linear spaces. We shall assume at first that
the linear spaces are R"™ for a fixed integer n, which will be the dimension of the

manifold.

3.2.1 Manifolds and Atlases

Definition 7. [70][Manifold]
A manifold M of dimension n is a topological space M, such that every point x € M

has a neighbourhood which is homeomorphic to an open set in Fuclidean space R".

Definition 8. [10] [Chart]
A chart for M is a homeomorphism ¢ : U — V where U is open in M and V is

open i R™.

Definition 9. [70][Atlas/
A collection of charts A = {@a : Uy — Vala € I} is called an atlas for M if

UaEI =M.

Example 3.1. [10]
R™ or any open subset of R™ is a smooth manifold with an atlas consisting of one

chart. The unit sphere
S" = {(a, !, 2| Y () = 1}
=0

has an atlas consisting of two charts (Ux, ¢4), where Uy = S"\{(£1,0,...,0)} and

1

= m(l‘l, ,C(Jn)

(ﬁi(xo,xl,...,x")

Definition 10. [/0] Two differentiable atlases A and B are compatible if their union
is also a differentiable atlas. Equivalently, for every chart ¢ in A andn in B, ¢ on~*

and n o % are smooth.
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Definition 11. [70][Smooth Manifold]
A smooth manifold is a set of points together with a finite set of subsets U, C M
and one to one mappings

¢ : Uy — R"

such that

1. UUy, =M.

2. For every nonempty intersection U,NUg, the set ¢o(UsNUpg) is an open subset
of R™ and the one to one mapping ¢pgod, is a smooth function on ¢o(UsNUp).

Definition 12. [7/[Smooth Function]
A function f on M into N is said to be smooth if for every p € U there is a chart
(U, d) for M and a chart (V,) for N at f(p) with f(U) CV such that the partial
derivatives of

bofod o) SR (V) CR”

exist and are continuous to all orders, i.e, ¥ o f o ¢~ is smooth.

Definition 13. [10] A differentiable structure on a manifold M is an equivalence
class of differentiable atlases, where two atlases are deemed equivalent if they are

compatible.

3.2.2  Tangent Vectors

Two curves t — ¢1(t) and t — ¢5(t) in an n-manifold M are called equivalent at

the point m if

c1(0) = c2(0) =m and (¢ 0 ¢1)'(0) = (¢ 0 ¢2)'(0)

in some chart .
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Definition 14. [9] Let f : R" — R be a differentiable function and let v be a vector

in R™. We define the directional derivative in the v direction at a point x € R™ by

d 0
Duf(e) = S5+ %) lio= D v (2).

=1

The tangent vector at the point x may then be defined as

Definition 15. [9/[Tangent Vectors]
Let M be a differentiable manifold and let A(M) be the algebra of real-valued differ-
entiable functions M. Then the tangent vector to M at a point x in the manifold is

given by the derivation D, : A(M) — R.

Definition 16. [/0][Tangent Space]
A tangent space to M at m € M s the set of tangent vectors to M at m which

forms a vector space, and it is denoted by T,, M.

Definition 17. [10/[Tangent Bundles]
The tangent bundle of M, denoted by TM, is the set that is the disjoint union of
the tangent spaces to M at the points m € M, that 1s,

Thus, a point of TM is a vector v that is tangent to M at some point m € M. If
M is an n-manifold, then T'M is a 2n-manifold.

3.2.3 Differentials and Covectors

If f: M — R is a smooth function, we can differentiate it at any point m € M
to obtain a map T,,f : T,,M — Tyu,R. Identifying the tangent space of R at
any point with itself, we get a linear map covector df(m) : T,,M — R. That is,
df(m) € T M, the dual of the vector space T,,M. We call df the differential of f.
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For v € T,,M, we call df (m).v the directional derivative of f in the direction v.

We now identify a basis of T, M using the operators % We write

i

0 0
{617-“7671} = { 0—(1:1, 78_{1;'”}

n
. . )
for this basis, so that v = '_5 1 V' 5

)

If we replace each vector space 1), M with its dual T); M, we obtain a new 2n-
manifold called the cotangent bundle and denoted by 77 M. The dual basis to %
is denoted by dz;. Thus, relative to a choice of local coordinates we get the basic

formula of
df(z) =D _ 3 "

for any smooth function f : M — R.

d.’EZ’

Definition 18. [/0][Multilinear map]
A map oV x ... xV (there are k-factors) — R is multilinear when it is linear in

each of its factors, that is,
(v, ..., avj + 0V}, . o) = aa(vr, ., V), s V) F bV, U )
forall j with1 <75 <k.

Definition 19. [5/[Tensor]
A tensor of type (k,l) at x is a multilinear map which takes k vectors and [ covectors
and gives a real number

Ty T M x ... xTx]\/{xT;Mx X ToM — R

v v~
k times l times

Note that a covector is just a tensor of type (1,0), and a vector is a tensor of

type (0,1), since a vector v acts linearly on a covector w by v(w) := w(v).
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3.3 Differential Forms

The main idea of differential forms is to provide a generalization of the basic op-
erations of vector calculus, div, grad, and curl, and the integral theorems of Green,

Gauss, and Stokes to manifolds of arbitrary dimension.

We have already met one-forms, a term that is used in two ways. They are
either members of a particular cotangent space 77 M or else, analogous to a vector
field, an assignment of a covector in 7,y M to each m € M. A basic example of a

one-form is the differential of a real-valued function.

Definition 20. [/0][Differential 1-form]
A 1-form a on a manifold M is a linear smooth function a(m) : T,,M — R on

tangent vectors.

Definition 21. [10][Differential 2-form]
A 2-form o on a manifold M is a function a(m) : T,,M x T,, M — R that assigns
to each point m € M a skew-symmetric bilinear form on the tangent space T,,M to

M at m.

Definition 22. [/0][Differential k-form/
A k-form a on a manifold M is a function a(m) : T, M x ... x T, M (there are k
factors)— R that assigns to each point m € M a skew-symmetric k-multilinear map

on the tangent space T,,M to M at m.

A k' order differential form (k — form) on R™ is a sum of terms of the form
f(x)dxy, Ndziy A ... Ndx,.

subject to the rule
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Definition 23. [10//(0, k)-tensor/

Differential form of degree k without the skew-symmetry assumption

Definition 24. [/0][Skew map]
A k-multilinear map o« : 'V x ... x V = R s skew-symmetric when it changes sign

whenever two of its arguments are interchanged, that is, for all vy, ...,v, € V,

(V1 ooy Uiy ey Uy oy V) = — (V1 o0, Uy ooy gy ooy V).

3.4 Tensor and Wedge Products

Definition 25. [5/[Tensor Product]
Let T and S be two tensors at x of types (k,l) and (p,q) respectively. Then the
tensor product T ® S is the tensor at x of type (k + p,l + q) defined by
T @ S(V1, ooy Uy Wy ooy W) = T(V1, ey Vg, W1, ooy W)
X S(Ukt1y +oes Vs Wi 15 -0y Wi q)

for all vectors vy, ..., Vp4p € TpM and all covectors wy, ..., wi4q € ThM.
Definition 26. /5] If « is a (0, k)-tensor on a manifold M and B is a (0,1)- tensor,
their tensor product a @ 3 is the (0, k + l)-tensor on M defined by
(@@ B)m(v1, s Vkt) = (V1 o, V) Brn (Vi1 - Vk)
at each point m € M.

Definition 27. [/0][Alternation Operator A]
Ift is a (0,t)-tensor, define the alternation operator A acting on t by

1
A(t)(vh vy Up) = _' Z SQ”(IO)t(UP(l)u '-'7vp(p)>7
P PESH
where sgn(p) is the sign of the permutation p,

() +1, p is even;
sgn(p) =
—1, pis odd.
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and S, is the group of all permutations of the set {1,2,...,p}. The operator A is

therefore skew-symmetrizes p-multilinear maps.

Definition 28. [/0][Wedge Product]
If a is a k-form and (8 is a l-form on M, their wedge product a\p is the (k+1)-form

on M defined by
(k+1)!

aNB ="

Ala® f).

For example, if a and § are one-forms, then
a A B(vr,v2) = av1)B(v2) — a(vz) B(v1),
while if « is a 2-form and [ is a 1-form, then
a A B(vr,ve,v3) = a(vr,v2) B(vs) + a(vs, v1)B(ve) + a(ve, v3)B(01).

Proposition 3.4.1. [10] The wedge product has the following properties:

(i) a A is associative: a A (BAY) = (aANB)A7.
(i) a A [ is homogeneous: (aa) A =alaAp)=aA (af).
(iii) a A B is distributive in a, 3:
(ac; + bag) A B = alay A B) +blaz A B),
a A (afy +0B2) = ala A By) +bla A B).

(iv) a A is anticommutative: a A3 = (—1)*B A «, where a is a k-form and 3

1s an l-form.
(v) Let o be a k—form, if k is odd then o N o = 0.
(vi) In any chart,

(dx™ A ... Ada™) A (do? A .. Ada?) = (do™ Ao Ada'™ Ada?t A A da).
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Proof. The homogeneity and distributivity properties of the wedge product are im-
mediate from Definition 28. From this we can deduce the following expression for

the wedge product in local coordinates:

Fora=3% . iy dx™ A A dx' and B =

1] 4eeeyl

1ot lemjldl'jl VANPYRAN dl’jl

alfp= Tl Z Qi i By AT A N dx AN da? A LA da

LARIPR Y SRR ]
The associativity property can now be checked straightforwardly. We derive the
anticommutativity property (iv):
Ifa=> a ,dc™ A...ANdx™ and B =" B;, j,dx?* A ... Adz’t, then
1 ) . ) .
a N 5 = m Z Oéh...ikﬁjl...jldx“ Ao AN ANdT? A LN da

UL yeenslks 150501

—1)* . . . ) :
(klll) Z iy g By gy @27 N ™ A N N AT NN
B SIS P S
(—l)kl ; j i i
= > B gda AN e N dat A LA da
R ST F SO

= (-8 A

For (v). a =Y oy, i dx™ A ... Adz' where k odd, then
ara=(-1)*aAa=0
Finally, we derive the(vi). Choose a chart about z. Then

(dz™ A ... Ada™) A (dz? A .. A da?)

kDl | | |
= ( k—:_l' >_A((dxll A LA dxlk) R (dxﬂl A A d:L’”).
k+1)! ' | | |
— ( k‘:‘l'> _A( Z sgn(U)Sgn(T) dric®) @ ... @ dzie® @ dzit) @ ... ® dij(l))_
o UESk,TESl
1

- W Z Sgn(a)sgn(r) dxiem A A drie® A dadtm A LA drdito

oc€SL,TES]
= dz"" A ... ANdx ANdadt AN dat
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Theorem 3.1. [)] Differential forms oy, aw, ..., . are linearly dependent if and only

if their wedge product vanishes,
arNag A ... Na, =0
Proof. 1f the differential forms are linearly dependent then without loss of generality
we may assume that a; is a linear combination of the others,
_ 2 3 r
a1 =0 "y +a"ag + ... +a Q.

Hence

ar ANog Ao N\a, = CLZOQ')/\OZQ/\.../\O!T

7\
<

1=2
T

= +a'as Ao N Nag AN

T
[}

Conversely, suppose aq, ao, ..., o, are linearly independent, then there exists a basis
{e;} such that

€1 = (q, €y = (g, N i 0 758

Since ey A ey A ... A e, is a basis vector it cannot vanish. [ |

3.5 Examples of Algebraic Computation of Products

Example 3.2. [7/Consider the 1—forms a = zdzx + ydy, B = ydz + xdy.

aANp = (xdr+ydy) A (ydx + xdy)

= aydr Adx + 2%dx A dy + yPdy A de + xydy A dy.
= (2* —yH)dx A dy.
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Example 3.3. [//Let a = zdx + ydy be a 1—form, f = xzdx ANdz + yzdy ANdz be a
2—form.

aANp = (xdr+ydy) A (xzde A\ dz+ yzdy A dz)
= 2?zdr Ndx AN dz + xyzdr Ady A dz
+ yxzdy Ndx Adz +yPzdy Ady A dz.
= (zyz —xyz)dz Ndy AN dz = 0.

Hence,
(xdx + ydy) and (xzdx Adz+ yzdy A\ dz)

are linearly dependent.

3.6 Exterior Derivative

The exterior derivative da of a k-form « on a manifold M is the (k + 1)-form on M

determined by the following proposition:

Proposition 3.6.1. [/0]There is a unique mapping d from k-forms on M to (k+1)-
forms on M such that:

(i) If a is a O-form (k = 0), then df is the one-form that is the differential of f.
=2t
(ii) If a and [ are k-form fields, and c¢; and ¢y are constants, then
d(cra+ o) = c1(da) + co(df).
Taking an exterior derivative thus is a linear operation.

(111) If « is a k-form given in coordinates by

o= Zailmikdx“ A Ndx™ (sumoon iy < ... < i),
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then the coordinate expression for the exterior derivative is

da = Z %d:ﬁj/\d:ﬁ'1 A Adz™ (sum on all j and iy < ... < i) (3.6.1)

(iv) The (k + 2)—form d*f = d(df) obtained by taking the exterior derivative of a

k—form f twice is a constant form having the value 0 (a zero form).

o\ Pf N
d(df) = ;d<%)/\d1‘ :Z( : axiaxjdxf)/\dx

(2

(P PN
- Z(axiaxa’ B (9xj(9xi>dx M =0

i<j

A k-form is called closed if da = 0 and exact if there is a (k — 1)-form
such that a = df, we get the fundamental and remarkable property of exterior

differentiation :

Proposition 3.6.2. [10/[Poincaré’s Lemma/
A closed form is locally exact; that is, if da = 0, there is a neighborhood about each

point on which o = dp.
Theorem 3.2. [7/[Cartan’s Magic Formula]
The exterior derivative of the wedge product of a k-form o and an l-form 3 is given

by
da A B) = (da) A B+ (=1)ka A (dB).

Proof.

By the definition of wedge product it suffices to show the rule for elementary form

o= Z ozil__ikdxil A ... Ndx*  and b= Z le---jzdle Ao Adzh

L1500y 1k VARTER) Jk

and their wedge product

aAB= D" i B A Ada™ Adat A LA da,
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dlanp) = ZZ lagfh 1) 4ot A da A o A da® A da? A A da

(92- i 0B, .. , . , ,
( 051.}.1. 5B+ %;',;” ail_._ik) dz" A dz™ A A dat A dae A LA da?t

a&“ — Ltk gyt A dat AL /\d:ﬂ) A (Zﬁﬁ__jldmﬁ/\.../\d:pﬁ).

< o, dz A L /\dx““) (—1)’“(2 it o 5 it p /\dx”)

oxh
h=1

=(da) A B+ (=1)*a A (dB).

3.7 Examples of Algebraic Computation of Derivatives

Example 3.4. [0] If o =>"7" | fidx; is a 1—form on R™, then

da = dez/\dxl—zafldxj/\dxl

i,7=1

of; dfi
= Z P 'dacj A d:z:l + Z 8—61.1'] N dfl?l

—  Qx; —  Ox;
1<i<j<n 1<5<i<n

- — Z gfzdmz/\d:c]—l— Z gf]:dxi/\dmj (3.7.1)

T
1<i<j<n L 1<i<j<n "

B of;  0fi . .
= Z (axi aIj)dxz/\dxj

1<i<j<n

where in (3.7.1) in the first sum we used the alternating property and in the second

sum we interchanged the roles of i and j.
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Example 3.5. 0] If a =3, fijdz; N dz; is a 2—form on R", then

— 0fi;
do = Z dfi; A drs Adaj = Z > ax,: dxy, A dz; A da;
1<i<j<n 1<i<j<n k=1
0fi 0fi;
_ Z axkjdask/\d:v,-/\dxj—l— Z ax:dxk/\da:i/\dxj
1<k<i<j<n 1<i<k<j<n
+ Z i drp Ndx; N\dz;
= Owy, !
1<i<j<k<n
Ofjk Afik
1<i<j<k<n 1<i<j<k<n
dfi;
“dxy N dr; N\ dx;. 3.7.2
" Z Oxy, T i ( )
1<i<j<k<n

We remark that that the last equation can be simplified to

Jo — Z <8fi,j _ Ofik . afj’k)dxi/\dxj/\dxk. (3.7.3)

R oxy, Oz, ox;
1<i<j<k<n

Here in (3.7.2) we rearranged the subscripts(for instance, in the first term we rela-

belled k — i, 1 — j, 7 — k) and in (3.7.3) we applied the alternating property.
Example 3.6. [0/Let a = xydx — xydy + xy*23dz

d(xydr — vydy + 2y*23dz) =d(xy) A dz — d(zy) A dy + d(zy*2*) A dz.
=(ydx + xdy) N\ dx — (ydx + xdy) A dy
+(z(3y*22dz + 2y23dy) + y*23dx) A dz.
=(ydx + xdy) A dx — (ydx + xdy) N\ dy
+(Bay?22dz + 2xy2idy + y* 2 dw) A dz.
=ydx N\ dx + xdy N\ de — ydx N\ dy — xdy A dy
+3zy22%dz A dz + 2wy2Bdy A dz + y*23dx A dz.
=xdy A dx — ydx A dy + 2xyzdy A dz + y* 2 dx A dz.
=(—z — y)dx A dy + y*2Pdx A dz + 2xy2Pdy A dz.
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Example 3.7. [5] In this example we find the exterior derivative of the 2—form

a =2y + 22 dr Ady + z(2* + y)dy A dz

d(2*(y + 23 dx A dy + z2(2® + y)dy A dz) =d(2*(y + 2%)) Adx A dy
+d(z(z® +y)) A dy A dz.
=2z2%dz N dx A dy + 3zadx A dy A dz.
=5zx%dx A dy A dz.

3.8 Lie Derivative

The Lie derivative can also be defined on differential forms. In this context, it is
closely related to the exterior derivative. Both the Lie derivative and the exte-
rior derivative attempt to capture the idea of a derivative in different ways. These
differences can be bridged by introducing the idea of an anti-derivation or equiv-

alently an interior product, after which the relationships fall out as a set of identities.

Definition 29. [//[Interior Product]
Let w be an k—form and X be a vector field on M. Define the interior product

v QF(M) = QF (M)

by
(txw)(Yi, .oy Y1) = w(X, Y7, ., Vi)

The differential form vxw is also called the contraction of w with X.
That is, vx is R—linear,and
ix(WAN) = (txw) A+ (=1)Fw A txn

The Lie derivative of an ordinary function f is just the contraction of the

exterior derivative with the vector field X

Lx f=1xdf
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Lemma 3.3. [/] Let w be a differential form of degree | and X be any vector field,

then the Lie derivative has the following properties:

~

. Lxw 18 of the same degree as w.
2. d(,CXw) - Ede.

3. Lxw = txdw + d(txw).

E N

Ly (wANO)=LxwANO+wA Lx0.

S

Lixw = fLxw+df Nixw

where ¢ is the interior product between w and X and d is the exterior derivative.

Theorem 3.4. [/] The differential 1—form

= Zwi(x)a@

18 k—homogeneous if and only if

Lxw=(k+1)w

where X =377 x' 0

Proof. Let w and X be defined as above. Then, recall that
Lxw = txdw + d(txw)

We calculate each term on the right hand side. It follows that

Lxdw = awlxjd ‘ Z awl r'da’. (3.8.1)

ij= 1

Similarly, we have

Lxw = Z wi(x)x
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Then

d(txw) Z awl r'dr! + Zwi(as)dmi (3.8.2)

zgl

From (3.8.1) and (3.8.2), we get

Lxw = Z g;%x]dx —i—sz

i,7=1

By euler’s equation, we conclude that w(x) is k—homogeneous if and only if

,Cxw = (k’ + 1)w

3.9 Integrability of Homogeneous Differential Forms

Lemma 3.5. [/] If w is a C', k—homogeneous 1—form such that txw = 0 then

txdw = (k+ 1)w.

Proof. k—homogeneity implies that
Lxdw = (k+ 1)w.
On the other hand
(k+ 1w =Lxw=ixdw + d(txw)

since txw = 0,
txdw = (k+ 1)w.

Proposition 3.9.1. [/] Let w be a C* differential 1—form such that .xw = 0. Then
w A dw = 0 with w k—homogeneous if and only if there is a 1—form [ such that
do =L Nw with .xf =k+1
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Proof. 1If dw = N\ w, then
w A dw = 0.

Moreover,

txdw = (Lxf)w — Blixw) = (k+ 1w,
but

Ede = Lde + d(b)(ﬂ)) = (k? + 1)w

This proves the k— homogeneity of w. Conversely, if w A dw = 0, then there exists
a 1—form g such that
dw = N w.

Hence,
txdw = (1xB)w — Blexw)
by using Lemma 3.5,
txdw = (Lxf)w = (k+ 1)w.
Then
Lxﬂ =k+1

Theorem 3.6. [/] Let w be a C', k—homogeneous differential 1— form such that
wAdw = 0 in a neighbourhood U of some point T. Then, there exists a (k +

1)—homogeneous function f and a 0—homogeneous function g, defined in a possibly
smaller neighbourhood V C U such that w(x) = f(z)dg(z).

Proof. Suppose that w A dw = 0. Then, there exist two functions f and g such that

w = fdg.
Since

txw =0,

then
txdg = 0;
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that is, g is 0—homogeneous. We have also,

dw = df Ndg
and
dg =w/f.
It follows that "
dw = — Aw.
f

Apply the vector field X to both sides of the previous equation and use Lemma
(3.5) to get
d
(k+ 1w = Lx7fw.

Thus, txdf = (k+ 1)f, which proves that f(x) is (k + 1)—homogeneous. [ |



4. SINGLE CONSTRAINT AND NON-HOMOGENEOUS
MODELS

The standard utility maximization problem under the budget constraint takes the

form

P {max U) ; plz=mwp),

x
where U is utility function that satisfies certain smoothness, monotonicity, and
concavity conditions, and w(p) is convex and homogeneous of degree one. The
solution of the above maximization problem was characterized in Alogeili[2]. We

state here the result that concerns the homogeneous case.

Theorem 4.1. Let z(p) be given, and define p"x(p) = w(p). Suppose w(p) is convex
and homogeneous of degree one. Then, there exist function \(p) and U(z) such that
D,U(z(p)) = A(p)p in the neighbourhood of a point p if and only if there is some
vector B(p) with

p'B(p) =1
such that for all v, we have:
oz — OxF o’ o OxF
—0') =5 p
Op; A Op; ‘ Opi B Opi ‘

in a neighbourhood of p

In the general case, we need to characterize the solution of a multi-constraint

optimization problem that takes the form:

P {mgxf(x) ;. Az < C(A),
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where f is a function satisfies the following conditions:

1. f is strictly increasing with respect to each coordinate of the vector x.
2. the Hessian matrix D?f is negative definite on the subspace {D,f}*.

3. f is of class C2.
and for each i € {1,...,m}, the function C* has the following properties

1. Cz :Rr_il__,'_ — R++.
2. C'is a convex function of a.

3. (" is of class C2.

4. C'" is not homogeneous of degree one in a’; that is, (a’)? D C* — C¥(a®) # 0

Aloqeili[3], derived necessary and sufficient conditions for a given function to

be the solution of this problem.

Define a family of 1-forms €, k =1, ..., m, by

m
O = E Agrw?,
s=1

where w?® is the 1-form defined by

s/ oC N
i I i
“ Z(@a’» . ) “
j=1 J

and A are given functions, x is a solution of the above multi-constraint problem.
Theorem 4.2. Given the family of 1-form Qq, ..., Q.. Then QuN\dSy, = 0 if and only
if for any k' € {1,...,m}, the following conditions are satisfied for all 1 < i,s < m,
1< 5,0 <n.

(9)% or” . Ga:j Nk a)\sk k k’

—a, — )\z 7 War fv_ s 7 a
daj —= 9"~ " daj L dal; a ; ’“Z Oal;

r
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1 8)\k/k N u ox” i
T 0a; ’”“Zas J) £ aa;‘.a’”

aAsk s Nk a>\zk k’ i k’
Zaalsr skaZ+Akk/< D, az “ ”“Zak'

1 8)\k/k 8.737"
- — + A\ 5 ; 4.0.1
N Oa kkz da Z ) — Oaj Gr ( )

Let 2(A) be a solution of problem, C'(4) = Axz(A), then n X n matrix M*
defined by ‘
i O*x" Ozt Oz

it — day0aj " * da;; * daj

and 7" be the matrix defined by
Z 924" it o
da;dd} Or 8@31 ‘
Theorem 4.3. Let x(A) € R, Ait(A) > 0 be given functions defined on a neigh-

bourhood U of some point A € RT%. Define C(A) = Ax(A). Suppose that the

following conditions are satisfied in U for all v,k =1,...,m:

1. Nidske = Agidig for all 1 < i k., s, t < m.
2. Conditions (4.0.1)
3. The matriz M® is positive semi-definite.

4. The restriction of the matriz T* to {(a’)T Dgx}t is a positive definite.

Then, there exist positive functions Ay, ....., Ay and a function V- which is quasi-

convex with respect to a' for each i, defined in a neighbourhood ¥V C U such
that DV = X\i(DgiC* — ).



5. SOLUTION OF THE INVERSE PROBLEM-MAIN RESULTS

5.1 Setting up The Model

We consider a multi-constraint maximization problem of the form

(P){maxf(x) ;. Az = C(A),

T

where f is a function that satisfies certain regularity and convexity conditions that
are specified later, A is an m x n matrix of rank m and C' : RT" — R, is a given
mapping. The i'! constraint takes the form (a*)?z = C(A) where @' is the i*" row

of the matrix A. Define the Lagrangian function

L(z,\) = f(z) + Z Ak (C’k(A) - Z afxl>
k=1

=1

with z € R}, and A € R, . The first order conditions for interior maximum give

of Zm: E
— = Akay, j=1,..,n
ox7 pet

Ax = C(A).

Define the value function of this problem by
V(A) = max{ F@)+> M (C’“(A) — Zafxl>}. (5.1.1)
k=1 =1

If the functions C*(a'), ....,C™(a™) are convex on R, then the value function

V(at,...,a™) is quasi-convex with respect to each a’ for i = 1,...,m.
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Differentiating the function V' (A) with respect to a} and using the envelope theorem

we get
IV K. ICk .
= E — — \27. 1.2
8a§ — Ak 8&3 A (5-1.2)

We suppose that C* is a function of the vector a* € R, only, where a* is

the k™™ row of the matrix A. Moreover, we assume that each component of the
mapping C(A) is homogeneous of degree one. This implies, in particular that,
the functions xz(A) and V(A) are homogeneous of degree zero and the Lagrange
multiplier corresponding to the i*" constraint, \;(A4) is homogeneous of degree -1 in
a’, and of degree 0 in a* for i # k.

We adopt the following assumptions on the mapping C.
Assumption 5.1. For each i € {1,....,m}, we assume that the function C* has the
following properties:

1. C": R}, — Ry is a function of a' only.

2. C"is a convex function of a'.

3. C'is of class C?.

4. Cis homogeneous of degree one in a'; that is, (a*)T Dy C* — C(a®) = 0.

We consider the following assumptions on the objective function f.

Assumption 5.2. Assume the function [ satisfies the following conditions:

1. f s strictly increasing with respect to each coordinate of the vector x.
2. the Hessian matriz D2 f is negative definite on the subspace {D,f}*.

3. f is of class C2.
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By applying the implicit function theorem, we show that the solution of the above
maximization problem as well as the associated vector of Lagrange multipliers are of

class C?.

Assumption (1) implies that D, C* = 0 if i # k which reduces equation (5.1.2)

to

Lemma 5.1. The partial derivative of the value function V(A) with respect to a} is

given by A
ov oc” ,
= . — J
5 )\Z(ﬁaé» @ ) (5.1.3)
Define a family of differential 1-forms w?, ....,w™ by

. [ OC" N
w :Z(Gai —x])daj. (5.1.4)

It follows that the differential of V', can be written as:

dVv = i Aiw®.
i=1

Notice that 20 5
7 ! z ZL'
dw' = 8z@zdal/\d ]kla dal/\da

The coefficients in the ﬁrst summation are symmetric, so we end up with

Z dal A da

7,k l
The ™" constraint is (a’)Tz(A) = C¥(a). Differentiating both sides of this equality

with respect to a}

o _ G0
oat oa’ @r T

J r=1 J
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and rearranging the above formula, we get:

66; — gl = axi a. (5.1.5)
da; —~ Oa;

Using this result, the 1-form w’ can be written as

. n or" . .
w' = -, da’ (5.1.6)
A )
= 09

Now, our inverse problem can be stated as follows:

We observe the function 27(A), j = 1,...,n from R to Ry .

Then we define the functions C*(a’) = (a’)?z(A).

We observe also a family of positive functions )\, using symmetry conditions

that will be given below.

Our goal is to find a function f(z), by first finding the value function V(A),
such that z(A) € argmax {f(z)|Ax = C(A)} and V(A) = f(xz(A)).

To allow for better follow up of our exposition, we will restrict the ranges of the
subscripts and superscripts used in the sequel as follows, 1 < i, k, k', s,t < m and
1<4,7,0,U';r <n. In what follows, §; denotes the Kronecker symbol which equals

one if 7 = k£ and zero otherwise.

5.2 Preliminary Results

In this section, we give some important preliminary results that will be used to solve

the inverse problem.

Theorem 5.2. The family of functions X\;, i,k = 1,...,m have the following homo-

geneity properties:
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e Homogeneous of degree -1 in a’.

e Homogeneous of degree 0 in a* |k # 1.

Proof.

@a; aa;

9V is homogeneous of degree —1 in a’, and the functions 2%
da ’ Oaf’

homogeneous of degree 0 in a’. Thus ); is homogeneous of degree —1 in a' and

The function xd

homogeneous of degree 0 in a*, k # 1. [

Theorem 5.3. Let V(A) be the value function given in (5.1.1). Then, V(A) has
the following properties:

(a) Positively homogeneous of degree zero if C(A) is positively homogeneous of

degree one.

(b) Quasi-convex if C(A) is conve.

Proof.  (a) Suppose C(A) is homogeneous of degree one, then Ax = C(A) is equiv-
alent to
tAx =tC(A) = C(tA).

We need to show V(A) =V (tA), Vt > 0. Note that
V(A) = {max f(z) st Az =C(A)}
V(tA) = {max f(x) s.t tAz = C(tA)},

but
C(tA) =tC(A)
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by homogeneity of degree one.

V(tA) = {max f(x) s.t tAx=C(tA) =tC(A)}.
= {max f(x) st Az =C(A)}.
= V(A).
We prove that the value function is quasi-convex. Let

~

A=(a',...;a™T and A = (a',...,a™)T. Consider the convex combinations:
A= (at,...,am7T =k, ...,a™T+ (1 - k)@, .., a™7
for € (0,1). Suppose that V(A) < U and V(A) < U. We want to show that
V(A) < max{V(A),V(A)}.
Introduce the following sets
S ={z|Az < C(A)}, §={z|Az < C(A)}, §={z|Az < C(A)}

We claim that S ¢ SU S.

Indeed, if this is not the case, then there exists z such that Az > C(A) and
Az > C(A) whereas Az < C(A). Tt follows that for any & € (0,1), KAz >
kC(A) and (1—rk)Az > (1—k)C(A). Adding up the last two inequalities and
using the convexity of C'(A), we get

Az = kA4 (1 —r)A)z > kC(A) + (1 — K)C(A) > C(kA+ (1 — r)A) = C(A).
Hence, Az > C(A) which is a contradiction, so S ¢ SU S as announced. This

result implies that

V(A) = max f(z) < max f(z) = max{V(fl), V(A)},

zeS zeSUS

which means that V(A) is quasi-convex.
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Theorem 5.4. If the function f(x) satisfies Assumption (5.2) and C(A) is of class
C?, then the map A — z(A) and the function A — \(A) are of class C?.

Proof. Recall that

V(A) = max { flx)+ Z)\k (C’f(A) - Z(ﬁ“ﬁ) } :
k=1

=1

Derive with respect to x and A,we get the first order conditions:

D.f — AT\ = 0, (5.2.1)
Az —C(A) = 0.

Let F' be defined by F(A,z,\) = (F1(A,x, \), Fy(a,z, \)), where
Fi(A,z,)\) =D, f — AT\ | and Fy(A,z,\) = Az — C(A) .

D,F, D,F D? —AT
DoAF = 1 A1 _ 2f () .
D.F; Dyfy A 0

We need to show D, ,F' is nonsingular to apply implicit function theorem.
Let ¢ = (¢!, ¢*)T where ¢ € R™™™. We will show that the linear system (D, \F)( =

0 has only the zero solution. Let (¢!, (?)T # 6),

(7)) (0)

Df(a)Ct — AT =0 (1)
At =T 2)

It follows that ¢! € N(A) = {Vf}* which we get be multiplying (5.2.1) from left
by ¢! . Multiply the first equation by ¢!, we get

¢ (D2 ()¢ =0
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which is a contradiction to the assumption of the Hessian matrix of f is negative
definite on {Vf}+. Thus, ¢! = U and 2 = ﬁ, then the homogeneous system
D, »F¢ = 0 has only the trivial solution ¢ = (¢*,¢*)” = (0,0)7, so the matrix D, \F
is nonsingular and we can apply the implicit function theorem which guarantees that
x(A) and A(A) are of class C2. |

Lemma 5.5. Let z(A) be a solution of a multi-constraint mazimization problem of

the above type, then

ot N ToLa
T 4 5, = 5.
= &Lj 8aj

Condition (a) follows when i # k. If ¢ = k, then multiply both sides of the last

equality by a}, summing over j, we find

Z aCi—xj ai = Y axraiai
8a§ i aaé- Jr

J Jr=1

Now use homogeneity of = to get (b). [ |

5.3 Mathematical Integration: Necessary and Sufficient Conditions

Our objective now is to give sufficient conditions and to express them as a system
of partial differential equations that have to be satisfied by the coefficient function
Aix and the function z(A).
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Definition 30 (Coefficient Function \jy).
Let A\, be the function defined by Ay, = \;/ \p such that Ay = 1 for everyi=1,.....m
Nk = 1.

The following result follows from homogeneity properties of \;, i =1,...,m.
Lemma 5.6. The family of functions Ny, i,k = 1,...,m have the following homo-

geneity properties:

a. Homogeneous of degree -1 in a'.

b. Homogeneous of degree 1 in a*.

c. Homogeneous of degree 0 in a* |, k' # 1, k.

That 1is,

8)\2 / / /
Za k"f o= A(6F — 6.

Equation (5.1.3) implies that

10V oC! ;
— =\ - — ) |. 3.1
A da; Adk ( oai " ) (5:3.1)

J

Define a family of 1-forms €, £k =1, ...,m, by

Q= A, (5.3.2)
s=1

where w?® is the 1-form defined by (5.1.4) or the equivalent form (5.1.6). Notice
that Qy, ...., 2, are defined using observable functions only. Then, equation (5.3.1)
can be written as updV = 2, which is equivalent to Q A d§2, = 0. Clearly, the
family of 1-forms defined by (5.3.2) are collinear to the same gradient dV. The last
equation gives the necessary and sufficient conditions for mathematical integration.
This result stems from the underlying structure of the optimization problem. The

following result proves that the 1-forms €2y, ...., €2, are proportional.
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Lemma 5.7. [3] Let Q,....,Q,, be the family of 1-forms defined by (5.53.2) with
Nig = i—;, then

foralli,k=1,..m.

Proof. Using the definition of €, in (5.3.2) we have

m

QA = ) (Auda)w' Aw'.
s,t=1
= D (Midak — Asid)w' A w’.
t<s

The coefficients \j; Ag — Agi A are identically zero since

Midse _ Aeds Ak o
Aidik Ak AAe

This is a general result that is true for any 1-forms defined by equation (5.3.2)
with coefficient A\, = \;/Ag. This result is obvious if Qf = pugdV.

Theorem 5.8. [7] Given the family of 1-forms Q, ...., S, defined above, then there
exist m+1 functions iy, ....., by and V', defined in a neighbourhood U of some element
A € R7Y, such that Q, = pedV for k = 1,....,m if and only if the condition
Q. A dQ = 0 holds in a neighbourhood V of A withUd C V.

Proof. Using Darboux Theorem [(], Q) A d€. = 0 if and only if there exist two
functions p; and Vi such that
O, = prdVy.

Lemma 5.7 implies that

Therefore,
dVi = ¢ (A)dV; , Yik=1,...m
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for some function ¢;;. So we can set

dVi = ... =dV,, =dV.

We also need the following lemma.

Lemma 5.9. [9] Let Q,...,Q,, be the family of differential 1-forms defined in
(5.3.2). Then, if Q; N dQ; =0 for some i, then

for any k € {1,...,m}.

Proof. Let i,k € {1,...,m}. Assume that

Note that €2; A Q, = 0 if and only if Q, = ©€; for some function .

Taking the exterior derivative we get
dQ, = pd$2; + dp N Q.

Multiply both sides of the last equation by €2, and using the fact that 2, = €,
we find that

Clearly, the 1-forms €y,...,€,, belong to the space of 1-forms spanned by

wl,...,w™. Moreover, it follows from the definition of w!, ..., w™ that they are linearly

independent since w'A, ..., Aw™ # 0. Let us consider the following result.

Lemma 5.10. [/ Let By, ..., Bm belong to the subspace of 1-forms spanned by o', ..., a™.

m

Suppose that o', ...,a™ are linearly independent; that is, o' N ... A a™ # 0.

Then ; A\ B = 0 if and only if there exist C§* rank-one symmetric m X m matrices
My = (bisbit), such that 5; =Y " bisar®.
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Proof. Since i, ..., fm belong to the linear span of o!,...,a™ then for any i there

exist m functions b1, ..., b;,, such that

Bi = Z bisa”
s=1
Therefore,
BiABr =) bisbra® Aol =Y (bisbre — bubrs)a® Aol
s,t s<t
Thus

Bi A Br =0

if and only if
bisbkt = b’itbks-

[
Theorem 5.11. Let 4, ...,€0, be the family of 1-forms, then for any k =1,....m
Q. NdQ, =0
if and only if there exists a 1-form «y such that

Our objective now is to explicit the necessary and sufficient conditions for math-

ematical integration given in Theorem (5.8).

Theorem 5.12. Given the family of 1-forms Qq,...,Q,,. Then
if and only if

1. there exist a set of rank one n x m matrices Ry, Rs, ..., R,, that satisfy the

conditions Ry(a')T = 6..
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2. foralll1 <i,s <m , 1< 75,1 <n the following conditions are satisfied.

ik ox" . ox? .
——a, — g i a,
aa? - aa;ar k@af kza z Q,
>‘s r l
AT N R WLy Sa;f. (5.3.4)

= - a kT~
7 s T 8 7,
da; — Oa; da

Proof. 1. Recall that Q; A d€2, = 0 if and only if there exists a 1-form «; such
that
ko = VAN Qk (535)

The 1-form a4, can be identified (mod ). Notice that

Q= Z)‘Z’“Z o Za vdal,.

rj=1

Define a family of vector fields by

Then,

“ "\ Ox" " 0
% Qg i 1%
< Q > = < ik -a’da’ a; — >
76 Z ? a 2; aj

Oat " 77 J k'
i=1 rj=1 J ji= 9
n
ax ’o
k' Kk
= )\k’k E aak,ar CLJ =0
rg=1"4

To find a 1-form o that satisfies the equation d€2;, = ay A Q, we apply both

sides of this equation to the vector field £¥, so we have

< ko? (gkl7 ) >=< Oékafk, > Qk — o < Qk,gkl > . (536)
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But < Q, &¥ >= 0, Vk, k. Therefore, equality (5.3.6) becomes
< d%, (¥, ) >=< oy, ¥ > Q.

Now

Performing the exterior derivative, we get

207 O Mg, (OCT .
A% = > Ak ( B~ ouf )da, Adal+ > 5a; ( o )dal A dd

1,7,8,l 1,7,8,l

Using (5.1.5), we can write d€2, as

ik x— 02" O
dQ’“_Z(aa;’ T o /\ma )dal/\da

i7j757l

Now, we apply the 2-form df;, to the vector field £¥', we find that

/ a>\k ox" . &’L’] ’ ;
A, (€F,) > = . -al — \p—— | a} da’.
< kv(g ) ) > %;(aa;g - aa;ar kaak )al a]

6)%% ox" K or’
SR )

7,8,0
i .
= Z@k’ ay 6’ 7nda +)‘k’kzasagdal'
4,5, 7,8,1

Then, using Lemma (5.6) we have

a>\z / / /
2o ol = Awlol =),

= oF ZM ——ardal + A <Z aaF ak/dal/ Z o k'da§').

We end up with

< d, (€F,) >= ¥ Z )\m = Q.
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Depending on the above formulas, we get

< ko,(§ ) >=< ap, & > Z)\,kz 9 la da 55/2/\1"“2 aﬁaida;
i r.j '

%
J

We conclude that the differential 1-form «y, must satisfy < ay, ¥ >= 0f by
seeting o = 3, R, (A)da;.

2. Now equation (5.3.5) can be written as

DN O i 8 ! oz" 8 p 7

i,4,8,0 1,5,8,0
Ok ox" . ox? T A
. =, — Nk ; R (A) Ak —Z.alr) daj Nda’; = 0. (5.3.7)
Z;l( daj — Oa; Jda XT: oa; : I

Write the previous equation as
Z (I‘k)SZdal Adal =0,
i,j,S l

where

= —al — \; - R A Z.
daj <~ 0d] o ’“a : e (A) Ak Z dal "

(Tw)3)
Then equation (5.3.7) is satisfied if and only if ()3} = (Ty)? for any given

ke{l,..,m}andall 1 <i,s <mand 1< j 1 <mn. So, we get the erquired

symmetry conditions.

Corollary 5.12.1. Suppose that Conditions (5.3.4) are satisfied. Then

(a) S; = ST, foralli=1,..

where Sg 1s the n X n matrix whose jl-entry is given by

0’ .
Sjl _ R] z
L ddl Z dal r




5. Solution of The Inverse Problem-Main Results 46

(b) G+ RL(A) Y Seral

where Ty, = (3 25-alak) ™ = ((a") (Dgsa™)ak) L.
rgl 9

Proof. If s = i = k then, using the fact that A\; = 1, relations (5.3.4) boil down to

the following symmetry conditions

O’ , ! oz"
: al = —R.(A _al.
aa; Z aa; y u( ) - aa; Q,

So we get (a). To prove (b), it suffices to take s = k and i # k in (5.3.4) which

writes down in this case as

l .
O\ik ox" | \ ox? sz :—a.—R](A) 8:6 (538)

i
daf “~ dai """ odf gai" " " oal daf

Now, multiply both sides of the last equality by a?, summing over 7,

_a)\Zk c%v z 8203 axr ;o
Oaff & 0, ayay — ”“Z Baf @y (A>)‘ik2 o, a,.a;
T py
oz
) J’ ZR 8(1;“ ark
But,
> Ri(A)dl =
j/
Therefore, we have
Ok oz” k o ot
~ - ’L i A )‘z _adtak = k.
8@? 7_/ 8a; a,a kz da k Qo ( ) k; aa;,aTa] : aa},aj

Solving to get the following formula

Ok

31’j/ k 1 axl k
_8af = AikTik ; 8_af g T Aik R (A) — Tk Z Maj" (5.3.9)
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Substitute back into (5.3.8), we get
+ R (A) O i
lkT’LkZ 9a k: J a laT' ik - Tsz z J Z i' T
oz’ . x! , 3:10
—Nik == ; f=——"— R (A
“oaf ’“Za” ;. ’f” dar"
Then,
4 or" o’
k a’ k 7
’LkT’Lk Z a k j a ’l r le Z Z J Z ‘,;a’r - )\Zka_a,f
oz 890
Rearranging, this condition can be written as
8 .
Z @ Z "a,
J J’
oz’ o' ;
’kz k J 7 a,
( Oa 8a )
|

Remark 5.3.1. We can use condition (b) to determine the functions \y.
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5.4 Particular Case: m =n = 2
We consider a multi-constraint maximization problem of the form

max f(x)
such that
CYA) = alz' + aa?
C*(A) = alx' + a32”.
Define the Lagrangian function
L(z,\) = f(x) + M (C'(A) — (a12" + a32?)) + Ao (C*(A) — (aiz' + ad2?))

with z € R%,, and A € R?,. We take the derivative with respect to the control

variables x, and the first order conditions for interior maximum are

dai

P 2
LS nah =12
k=1
Define the value function of this problem by
V(A) = max{f(z) + M\ (C(A) — (a12" + a32?))

+A2(C?(A) — (afz' + a32°))}.
Differentiating the function V(A) with respect to a’, we get

2

oV oCk )
— g
da Z Ak dat Al
1 j
But, D,:C* = 0 if i # k. Then,
ov oCt .
W Yo
oa’ A oa’ Al
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Define a family of differential 1-forms w!,w? by

Differentiating the function w® with respect to af

L PO
dw' = - Wdal/\da ; dal /\da

B

The coefficients in the first summation are symmetric, so we end up with

; oz’
dw' = Z daF dal /\da
7.kl

2

The ™ constraint is C*(A) = >°_, aia? = aix! + abz?. Differentiating both sides

J 17
of this equality with respect to aj, we obtain

2

o _ O
oat 8a'ar v

1/.
J r=1 J

and rearranging the above formula, we get

Thus,

The necessary and sufficient conditions for mathematical integration in this case

given by:
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Theorem 5.13. Given the family of 1-forms €1,€. Then
if and only if
1. there exist a set of rank one n X m matrices Ry, Ry. that satisfy the conditions
Rk(ai)T = 5;@

2. forall1 <1,5s<2,1<74,1<2 the following conditions are satisfied.

8/\7,k 8957" i aZL’j
da; 8ai- @r = )\ik% Ak Z

a)\sk Oxt i
} : ot — A2 Ri(A
aa; 7‘ Skaa} sz( )/\

&
8@1 r

(5.4.1)

5.5 Economic Integration

In this section, we solve the economic integration problem. We start by giving the

following theorem.

Theorem 5.14. Given a function z(A) € R, be a zero—homogeneous in a', i =
1,....m and a family of strictly positive functions Ny, , 1 < 1,k < m all of class
C? that satisfies homogeneity conditions (5.6) defined in a neighbourhood V of some
point A such that Agdes = Asik for all Mg, 1 < i,k,s,t < m. Then, there exist
m+1 functions p, ..., px and V', defined in a possibly smaller neighbourhood U C 'V,
such that pedV = Qy if and only if conditions (5.3.4) are satisfied in V.

Proof. Given the functions z(A) and Ajx, 1 < i,k < m as in the statement of the

theorem. Define a family of 1-forms ., £k =1,...,m as

m

S

Q= E Askw®,
s=1
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where w?® is the 1-form defined by
s "L Ox"

YT Z oat

rj=1 J

Now, Qi A d€); = 0 if and only if there exist two functions p; and Vj such that

S S
a,daj.

O, = prdVi.
But by Lemma(5.7)

Therefore, dVy, = ¢y (A)dV;, Vi, k = 1,...,m for some function ¢;;. So we can set
dvy = ...=dV,, =dV. [ |

We have the following result.

Lemma 5.15. Suppose that V (A) is the value function, x(A) is a solution and \(A)

is the associated vector of Lagrange multipliers for problem (P),
C(A) = Az(A).
Then we have
D2V (A) = N(A) (D20 (a") — Dgiz(A)) + DyiMi(A) (D C*(a') — z)*. (5.5.1)

Moreover, the n x n matriz D2,C*(a') — Dyix(A) is symmetric and positive semi-
definite on {D,:V }+.

Proof.
D,V = \(D,C'(a") — ). (5.5.2)
Differentiating equation (5.5.2), and we get the first order conditions
D2,V(4) = M(A)(DACHa’) — Dya(A)) + Dy A(A) (D Ci(a’) — )T
and the positively semi-definite result follows from the fact the value function V'

is quasi-convex and the C(a’) are convex with respect to a’, and symmetric by

summation of two symmetric matrix.
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Lemma 5.16. Let x(A) be a solution of problem (P) and C(A) = Ax(A). Then

0" &ljl ox’ 0*C'*
E ay + —0; + 52 5L ok, 5.
Gafaal @ 8 ” 8a 8a§“8 i 8TsT (5.5.3)

Moreover, if C'(a') is a convex function then the n x n matriz M' where

7,

7 % 7’ Ry + 7
8@,0@ 8ajk Oa;

Z 82 T ; 8!El (‘hj
is symmetric and positive semi-definite.

Proof. The s* constraint takes the form
(a*)"2(4) = C*(a%).
Differentiating both sides of this equality with respect to aj-,

0C*(a 5)51 " 0z"
8aj s 8 Z r

S addl. (5.5.4)

Differentiating the equation (5.5.4) with respect to af,

" o' oxd ,  9*C*
Z@af@al " 8a15 da kés ~ Jaloa 25858

Thus, we have equation (5.5.3). Positivity follows from the convexity of C*(a’) by

theorem 2.4, and symmetric by summation of two symmetric matrix. [ |

Lemma 5.17. Let x(A) and C(A) = Az(A). Then the matriz T" defined by
Z 02" i 8Il
daj0a ’” 8a§-'

is symmetric and positive semi—definite on the subspace {(a*)T Dz},

Proof. From the above equation (5.5.3) we have 7" + Djixz = D% C". Using this
equation and the result (5.1.3), we get

o1
D2V = \T' + A—(DaiAi)(DaiV)T.

i
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The result follows from the last equality, the quasi-convexity of V' with respect to
a’ and the result that
DoV = Ni((a") ' Dyiz).

The following theorem solves the economic integration problem.

Theorem 5.18. Let x(A) € R}, A\p(A) > 0 be given functions defined on a
neighbourhood U of some point A € R where x is zero—homogeneous in a', and
ik satisfy homogeneity conditions (5.6). Define C(A) = Ax(A). Suppose that the

following conditions are satisfied in U for all 1,k =1,...,m.

(a) Midsk = Asida for all 1 < ik, s, t < m.

" o\ 0 ox?
. T J A
ik :]C.aZ -\ o ik E a,

k
da} dal " " dag a’ r
T

Mk 0" oz’
= O Y RL(A)A, a;
Dat 2 far ™~ Mgy ~ kil ’“Za ;i

(¢) The matriz M is positive semi-definite.
(d) The restriction of the matriz T? to {(a’)T Dyiz}t is positive semi— definite.

Then, there exist positive functions A1, ..., Ay, and a function V' which is quasi-convex

with respect to a® for each i, defined in a neighbourhood V C U such that
DaiV = )\Z(DG,C” - ZE)

Proof. The condition (c) implies that the function C%(a’) is convex. Consider the
family of 1-forms €4, ..., 2, defined by

QU = ZAm(acz—xﬂ‘)da;.
— Z)‘Zk 9 zarda

r,g=1
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Conditions (b) are equivalent to Q4 A d€2; = 0. Using Darboux theorem, the last
equation is satisfied if and only if there exist two functions p; and V', where p is
1—homogeneous, and V' is a zero—homogeneous such that ppdV = Q. Note that V

is independent of k. Therefore, we have

oV "L oz
e i = i -q (5.5.5)

SN
MU Z a zaJ = )\zk 8@’.(1” CL;?.

Using 75 = (Z o, at k) , where 7, is homogeneous of degree -1 in a’, homoge-

neous of degree 0 in ¥, and homogeneous of degree -1 in a*, V k' # i, k.

We can write

Aik 1 )
L. k.
= WDy 0 7
It follows that
7wt (@F)'DyVo= Aig(A) > 0 (5.5.6)

for all A in sufficiently small neighbourhood of some point A. Substitute for \;, in
(5.5.5), we get

o N
prpdV = Z pumi (") Do V) ( da - 33]) da.

Canceling p, of the last equation, and setting

Ti((@") ' Dy V) =

Define a family of functions A;, 1 <7 < m by
i = 7((aF)T' D, V), for some k #i.
It follows from (5.5.6) that A; > 0 in a neighbourhood of A.

Then
dv = 2 Ai < o~ xj)daj.

J
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It remains to prove that the function V' has the required positivity conditions. Note

that ) , 1
T N A L
da;da’ Z A ( dajoa’; a aa;‘.(sg) da; 8a§- -

=1

Using relations (5.5.3), we can write D3V as

o*V ONs o Oz"
— = \T¢ > 5. 5.5.7
3@?8@? it Oay — 8@? @ ( )

Take a vector o € {D,:V}*; that is, o satisfies the condition

ZZasi =0,

j=1 r=1

It follows that . .
Z 6’ 8@ ———gj0 =X Y Thoj0 >0.

ji=1
We conclude that the matrix D2,V is positive semi—definite on {D,sV }+; that is,

V' is quasi-convex with respect to a°. [
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5.6 Duality

After solving the mathematical problem, we get functions Ay, ...\, and V' that have
the required properties. The question now is how to get a concave (or quasi-concave)

objective function.

In the single constraint case, if V' (a) is strongly convex (meaning that the Hes-
sian is positive), then f(z) = min{V(a)|a’x < ¢(a)} is quasi-convex. The objective

function can be obtained from the value function using the duality relation
f(a) = min{V(A)|(a’)"z(4) = C"(4)}.
The function f is not necessarily quasi-concave.

However, we can introduce a class of functions that is stable under duality. We

need to define the following space
E(A) ={v=(v"..,v™) € R™|(v)' DV =0, i=1,...m}.
We now recall the definitions of QE-convex and QE-concave.

Definition 31. Let U C R}, and V C R7TY. Suppose that C(A) is a convex
mapping. Then,
1. We say that a function f(x) is locally QE-concave if

Va* e U,JA* € V such that f(z*) = mead({f(x)m*x = C(A")}.

2. We say that a function V(A) is locally QE-convex if

VA* € V,3z" € U such that V(A*) = rjleig{V(A)\Aw* =C(A)}.

We have the following theorems.

Theorem 5.19. The value function V(A) is locally QE-convex if D3V is positive
definite on E(A).
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Proof. Let V be a neighbourhood of a point A in which the function V is defined.
The assumption that DgV is positive definite on £(A) for all A € V implies that if
v=(v',..,v™) € € such that (a' +v',...,a™ +v™) € V then

Via' +0h . am+0™) > Viat, ..., a™). (5.6.1)

To show that V is locally QE-convex, suppose that A* is given. Let z* be such
that
V(A*) = mjn{V(A)|Am* =C(A)}.

Take

2(A) = DuCi(a™) — ﬁpaivm*)

and
Ai(A7) = (A7) (@) "DV (A7),
where 7' = ((a))T(Dgix")a").
The point A* satisfies the first order optimality conditions. Its clear that

A*r*(A*) = C(a™). The point A* satisfies the second order condition for mini-

mum which is the positive definiteness of D4V on £(A*). |

Now, we need to show that the function

f(2) = min{V(4)| Az = C(A))

Aey

is locally QE-concave if V' is locally QE-convex. Let f(z) be a given locally QE-

concave fuction. Define a function V' : V C R — R by
V(4) = max{ (@) Az = C(4)}
Define also the function f*(z) = minacp{V(A)|Az = C(A)}.

Suppose that the function V(A) is defined in a neighbourhood of some point
AeR?™, thenU = {z € R |Ax = C(A), VA € V}.
The following theorem establishes duality between f and V.
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Theorem 5.20. [/] If V' is locally QE-convez then f* is locally QE-concave. More-
over, f* = f throughout U if f is locally QE-concave.

Proof. Let o* € U such that A* € argmin{V(A)|Az* = C(A), A € V}. Such A*

exists because V' is locally QE-convex. We want to show that
z* € argmax{f*(z)|A*'x = C(A"),z € U}.

The inequality f* < V(A*) = f*(z*) implies that f* attains its maximum under
the constraints A*z = C(A*) at z* we conclude that f* is locally QE-concave.
Now, we show that f* = f on U. let 2* € U such that there exists A* such that
z* € argmax{f*(x)|A*x = C(A*),x € U}. Such x* exists because f is locally QE-
concave. Therefore, V(A) > V(A*) = f(z*) for all A € V such that Az* = C(A).
This means that V' attains its minimum under Az* = C(A) at A*, from which, by
definition, f*(z*) = V(A*) = f(z*). This implies f*(z*) = f(x*), because x* is an
arbitrary point in U, we conclude that U*(x) = U(x), Vo € U. We have shown at

the same time, that if A* is the solution or belongs to the solution set of
mjn{V(A)\A:E =C(A), AeV},
then 2*(A*) is the solution, or belong to the solution set of
m:?x{f*(a:)]A*:c =C(AY), z e U},

and conversely. [ ]

Equation (5.5.7) implies that, on the space £(A), we have for any fixed ko €

{1,...,m}: )
)\i’m% = Aiko ;l + %% %ai = K;]f
J (Ul J
Clearly, the assumption of positive definiteness of D?V on the subspace £(A) can
now be stated in terms of observable functions, namely A\, and z. Moreover,
it is a stronger condition than the assumption of positive definiteness of 7% on
{(a")TD,ix}* as required in theorem . To put all pieces of the puzzle together, we

state the following theorem that gives the solution of the inverse problem
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Theorem 5.21. Let x(A) € R}, A\p(A) > 0 be given functions defined on a
neighbourhood U of some point A € R"™ . Define C(A) = Ax(A). Suppose that the
following conditions are satisfied in U for all 1,k =1,...,m.

(a) Midsk = Asid for all 1 < i k,s,t < m.

(b)

Ok ox” . ox? ; ox" .
—a! — \jp—— — A\ -q’
(9af - aa; a, k aaf Rks( ) k Zr: aa; Q,.
Ok ox"” Oxt - ox"
= 8’ - /\s a7 ] A As E s,
oa; . da} @r k oa’; R (A) Ak . da; r

(c) The matriz M" is positive semi-definite.

(d) The restriction of the tensor KU to the subspace E(A) is positive definite.

Then, there ezists a locally QFE-concave function f(x) such that

z(A) € argmax{ f(z)|Az = C(A)}.
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