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Abstract

This research aims mainly to solve an inverse problem arising in convex opti-

mization.

(P)
{

max
x

f(x) ; Ax = C(A),

where f is a strictly increasing funnction with respect to each coordinate of the

vector x, the Hessian matrix D2
xf is negative definite on the subspace {Dxf}⊥, f is

of class C2, A is an m × n matrix of rank m, C : Rm×n
++ → Rm

++ is homogeneous of

degree one and x ∈ Rn.

We consider a maximization problem under m linear constraints, we character-

ize the solutions of this kind of problems and give necessary and sufficient conditions

for a given function in Rn to be the solution of a multi-constraints maximization

problem.
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1. INTRODUCTION

Some inverse problems arise in microeconomic theory, in which we are required to

characterize the solution of some optimization problems, under one or many linear

constraints. The solution of the optimization problem is called the individual de-

mand function.

In the standard individual problem, the individual maximizes a function that

represents his tastes, called the utility function, under his budget constraints.

The individual demand function is fully characterized by the well known conditions

(i) homogeneity of degree zero, (ii) Walras Law, and (iii) symmetry and negative

semi-definiteness of its substitution matrix.

The individual demand is the solution to the utility maximization problem

under the budget constraint pTx = w, where p is the price vector, and w is the

individual income, where pT is the transpose of p.

The standard utility maximization problem under the budget constraint takes

the form

P
{

max
x

U(x) ; pTx = w(p)

where U is utility function that satisfies certain smoothness, monotonicity, and con-

cavity conditions, and w(p) is convex and homogeneous of degree one. The solutions

of this problem are characterized in [2].
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In the general case, a multi-constraints optimization problem takes the form:

P
{

max
x

f(x) ; Ax ≤ C(A),

where x ∈ Rn, A is m × n matrix and f and C are some functions. Hence, we are

dealing with a multi-constraints maximization problem with linear constraints. The

solution of this problem is a function of the parameters A = (aij), i, j = 1, ...m. We

assume certain conditions on the functions f and C that guarantee the differentia-

bility of the solutions which we require to be at least of class C2. Our main objective

is to characterize the solutions of this type of optimization problems. We rely on the

first order conditions and optimality conditions to achieve our objective. Moreover,

we make use of the envelope theorem and the value function, V (A) = f(x(A)), of

the above problem. The inverse problem arising in this case was addressed in [3].

Such kind of problems arise in many applications especially in some economic

contexts in microeconomic theory. Economic applications to this problem will be

given in the sequel. Moreover, we will show that the results we get here generalize

well-known results in consumer theory, see [7] for a recent survey. An inverse prob-

lem arising from economic theory was also solved by Ekeland and Djitt’e [8]. We

use the indirect approach to deal with this problem. This approach depends on the

value function, V (A).

The necessary and sufficient conditions on a given function x(A) ∈ Rn for the

existence of a value function will be given. It turns out that the necessary and

sufficient conditions will include a set of function λij , i, j = 1, ...,m that can be

computed from x(A). The problem then is to find the objective function. This is a

duality problem.

Our problem will be split into mathematical integration problem and economic
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integration problem.

• Mathematical integration. Given a function x(A) and a family of functions

λik, 1 ≤ i, k ≤ m, what are the necessary and sufficient conditions for the

existence of m+ 1 functions λ1, ..., λm and V that satisfy equation

1

λk

∂V

∂aij
= λik

(
∂Ci

∂aij
− xj

)
(1.1.1)

with λik = λi
λk

and Ci(ai) = (ai)Tx(A).

• Economic integration. In addition to the mathematical integration, we

impose the following additional conditions on the functions that satisfy (1.1.1);

the functions λi are strictly positive and the function V is quasi-convex with

respect to each ai for all i = 1, ...,m.

To get the necessary and sufficient conditions for mathematical integration, we

use the techniques of exterior differential calculus that showed to be powerful for

the treatment of such problems. A good reference to these techniques is the book

by Bryant et al. [6]. We get local results; that is, the functions involved in the

integration problem are defined in a neighbourhood of some given point. We define

a family of differential forms and set up an integration problem using these forms.

The solution of this integration problem, then, requires solving a nonlinear system of

partial differential equations. The integration problem will be solved using Darboux

Theorem [6].

This thesis consists mainly of 5 chapters, where chapter 2 consists of basic

definitions and results, and chapter 3 reviews exterior differential calculus concepts.

In chapter 4 solution of single constraint and non-homogeneous models are given.

Chapter 5 contains the our main results. The main results that include the necessary

and sufficient conditions for mathematical integration are given. Then, the economic

integration problem is solved. Finally, duality problem is considered in section 6 of

this chapter.



2. BASIC DEFINITIONS AND RESULTS

In this section, we state some basic definitions and results that we need in this thesis.

Definition 1 (Homogeneous Function).

Let D be a subset of Rn, f : D → R be a C1 function defined on D. Then, f is

said to be homogenous of degree k ∈ R, if for any real number t > 0, the following

condition holds

f(tx1, ..., txn) = tkf(x1, ..., xn), ∀ x ∈ D.

Theorem 2.1 (Euler’s Theorem).

Let D be a subset of Rn, f : D → R be a C1 function defined on D, f is k-

homogenous if and only if

n∑
i=1

∂f

∂xi
(x)xi = kf(x1, ..., xn), ∀ x ∈ D.

Definition 2 (Convex Set).

A set D ⊆ Rn is called convex if for any x, y ∈ D, λ ∈ (0, 1), the element

λx+ (1− λ)y ∈ D.

Definition 3 (Convex Function).

Let D ⊆ Rn be a convex set. Then, f is convex function on D if

f [λx1 + (1− λ)x2] ≤ λf(x1) + (1− λ)f(x2)

for all λ ∈ [0, 1] and all x1, x2 ∈ D.
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Definition 4 (Quasi-convex Function).

Let D be a subset of Rn, consider a function f : D → R where D is convex set.

Then f is quasi-convex on D if

f [λx1 + (1− λ)x2] ≤ max{f(x1), f(x2)}

for all λ ∈ [0, 1] and all x1, x2 ∈ D.

Theorem 2.2 (Envelope Theorem for Constrained Problems).

Let x∗(a) = (x∗1(a), ..., x∗n(a)) denote the solution to the following problem:

max f(x; a)

s.t. g1(x; a) = 0, ..., gk(x; a) = 0

Let λ1(a), ..., λk(a) be the lagrange multipliers for each constraint in this problem.

Then
d

da
f(x∗(a), a)︸ ︷︷ ︸

Total derivative of the original function f

=
∂

∂a
L(x∗(a), λ(a), a)︸ ︷︷ ︸

Partial derivative of Lagrangian

.

Theorem 2.3 (Implicit Function Theorem).

Let X ×P be an open subset of Rn×Rm, and let f : X ×P → Rn be Ck, for k ≥ 1.

Assume that Dxf(x̄, p̄) is invertible. Let ȳ = f(x̄, p̄), then there are neighborhoods

U ⊂ X and W ⊂ P of x̄ and p̄ on which the equation f(x, p) = y uniquely defines

x as a function of p. That is, there is a function ξ : W→ U such that:

(a) f(ξ(p); p) = ȳ for all p ∈W.

(b) For each p ∈ W, ξ(p) is the unique solution to f(x, p) = y lying in U. In

particular, then ξ(p̄) = x̄.

(c) ξ is Ck on W.

Definition 5 (Positive Definite Matrices).

A symmetric matrix A ∈ Rn×n is called positive definite if xTAx > 0 for all nonzero

x ∈ Rn.
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Definition 6 (Positive Semidefinite Matrices).

A symmetric matrix A ∈ Rn×n is called positive semidefinite if xTAx ≥ 0 for all

x ∈ Rn and there exists an x 6= −→0 such that xTAx = 0.

Theorem 2.4. [11] Let D be an open convex subset of Rn, and let f : D → R be

a C2 function. Then, f is convex if and only if D2f(x) is a positive semidefinite

matrix for all x ∈ D.

Theorem 2.5. [11] Let D be a convex subset of Rn, and let f : D → R be a function.

Then, if f is convex on D, then it is also quasi-convex on D.

Theorem 2.6. [11] Let f : D → R be a C2 function defined on an open convex set

D with everywhere nonzero first partial derivatives. Then, f is quasi-convex if and

only if for all x ∈ D,

y′H(x)y ≥ 0 whenever ∇f ′(x)y = 0

where H(x) and ∇f(x) are respectively the Hessian matrix, and the gradient of the

function f(x).

Theorem 2.7. [11] Suppose that f(x) is twice differentiable at x̄. If ∇f(x̄) = 0

and H(x̄) is positive definite, then x̄ is a local minimum.



3. EXTERIOR DIFFERENTIAL CALCULUS

3.1 Introduction

Exterior differential calculus is a mathematical tool which was developed in the

early twentieth century to solve problems in group theory and geometry, but it re-

cently turned out to be extremely useful for solving problems in the economic theory

of demands.

There are two major operations: a purely algebraic one, the exterior product

(also called the wedge product), and denoted by ∧, and special kind of differentiation,

called the exterior derivative, and is denoted by d. They operate on differential

forms, which are classified by their degrees: differential forms of degree 0 are just

functions, differential forms of degree 1 are analogous to vector fields, and differential

forms of degree k ≥ 1 arise from differential forms of lower degree by taking exterior

products and/or exterior derivatives. All the machinery of differential forms and

exterior differential calculus is directed towards proving and applying two major

theorems: the Darboux theorem and the Cartan-Kähler theorem.
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3.2 Differential Manifolds

Our first goal is to define the notion of a manifold. Manifolds are, roughly speaking,

abstract surfaces that locally look like linear spaces. We shall assume at first that

the linear spaces are Rn for a fixed integer n, which will be the dimension of the

manifold.

3.2.1 Manifolds and Atlases

Definition 7. [10][Manifold]

A manifold M of dimension n is a topological space M , such that every point x ∈M
has a neighbourhood which is homeomorphic to an open set in Euclidean space Rn.

Definition 8. [10] [Chart]

A chart for M is a homeomorphism φ : U → V where U is open in M and V is

open in Rn.

Definition 9. [10][Atlas]

A collection of charts A = {ϕα : Uα → Vα|α ∈ I} is called an atlas for M if⋃
α∈I = M .

Example 3.1. [10]

Rn or any open subset of Rn is a smooth manifold with an atlas consisting of one

chart. The unit sphere

Sn = {(x0, x1, ..., xn)|
n∑
i=0

(xi)2 = 1}

has an atlas consisting of two charts (U±, φ±), where U± = Sn\{(±1, 0, ..., 0)} and

φ±(x0, x1, ..., xn) =
1

±1− x0
(x1, ..., xn)

Definition 10. [10] Two differentiable atlases A and B are compatible if their union

is also a differentiable atlas. Equivalently, for every chart φ in A and η in B, φ o η−1

and η o φ−1 are smooth.
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Definition 11. [10][Smooth Manifold]

A smooth manifold is a set of points together with a finite set of subsets Uα ⊂ M

and one to one mappings

φα : Uα → Rn

such that

1. ∪αUα = M .

2. For every nonempty intersection Uα∩Uβ, the set φα(Uα∩Uβ) is an open subset

of Rn and the one to one mapping φβ◦φ−1
α is a smooth function on φα(Uα∩Uβ).

Definition 12. [5][Smooth Function]

A function f on M into N is said to be smooth if for every p ∈ U there is a chart

(U , φ) for M and a chart (V , ψ) for N at f(p) with f(U) ⊆ V such that the partial

derivatives of

ψ o f o φ−1 : φ(U) ⊆ Rm → ψ(V) ⊆ Rn

exist and are continuous to all orders, i.e, ψ o f o φ−1 is smooth.

Definition 13. [10] A differentiable structure on a manifold M is an equivalence

class of differentiable atlases, where two atlases are deemed equivalent if they are

compatible.

3.2.2 Tangent Vectors

Two curves t→ c1(t) and t→ c2(t) in an n-manifold M are called equivalent at

the point m if

c1(0) = c2(0) = m and (ϕ o c1)′(0) = (ϕ o c2)′(0)

in some chart ϕ.
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Definition 14. [9] Let f : Rn → R be a differentiable function and let v be a vector

in Rn. We define the directional derivative in the v direction at a point x ∈ Rn by

Dvf(x) =
d

dt
f(x+ tv) |t=0=

n∑
i=1

vi
∂f

∂xi
(x).

The tangent vector at the point x may then be defined as

v(f(x)) ≡ Dv(f(x))

Definition 15. [9][Tangent Vectors]

Let M be a differentiable manifold and let A(M) be the algebra of real-valued differ-

entiable functions M . Then the tangent vector to M at a point x in the manifold is

given by the derivation Dv : A(M)→ R.

Definition 16. [10][Tangent Space]

A tangent space to M at m ∈ M is the set of tangent vectors to M at m which

forms a vector space, and it is denoted by TmM .

Definition 17. [10][Tangent Bundles]

The tangent bundle of M , denoted by TM , is the set that is the disjoint union of

the tangent spaces to M at the points m ∈M , that is,

TM = ∪m∈MTmM.

Thus, a point of TM is a vector v that is tangent to M at some point m ∈ M . If

M is an n-manifold, then TM is a 2n-manifold.

3.2.3 Differentials and Covectors

If f : M → R is a smooth function, we can differentiate it at any point m ∈ M

to obtain a map Tmf : TmM → Tf(m)R. Identifying the tangent space of R at

any point with itself, we get a linear map covector df(m) : TmM → R. That is,

df(m) ∈ T ∗mM , the dual of the vector space TmM . We call df the differential of f .
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For v ∈ TmM , we call df(m).v the directional derivative of f in the direction v.

We now identify a basis of TmM using the operators ∂
∂xi

. We write

{e1, ..., en} =

{
∂

∂x1

, ...,
∂

∂xn

}

for this basis, so that v =
n∑
i=1

vi ∂
∂xi

.

If we replace each vector space TmM with its dual T ∗mM , we obtain a new 2n-

manifold called the cotangent bundle and denoted by T ∗mM . The dual basis to ∂
∂xi

is denoted by dxi. Thus, relative to a choice of local coordinates we get the basic

formula

df(x) =
∑ ∂f

∂xi
dxi

for any smooth function f : M → R.

Definition 18. [10][Multilinear map]

A map α : V × ...× V (there are k-factors) → R is multilinear when it is linear in

each of its factors, that is,

α(v1, ..., avj + bv′j, ..., vk) = aα(v1, ..., vj, ..., vk) + bα(v1, ..., v
′
j, ..., vk)

for all j with 1 ≤ j ≤ k.

Definition 19. [5][Tensor]

A tensor of type (k, l) at x is a multilinear map which takes k vectors and l covectors

and gives a real number

Tx : TxM × ...× TxM︸ ︷︷ ︸
k times

×T ∗xM × ...× T ∗xM︸ ︷︷ ︸
l times

→ R.

Note that a covector is just a tensor of type (1, 0), and a vector is a tensor of

type (0, 1), since a vector v acts linearly on a covector ω by v(ω) := ω(v).
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3.3 Differential Forms

The main idea of differential forms is to provide a generalization of the basic op-

erations of vector calculus, div, grad, and curl, and the integral theorems of Green,

Gauss, and Stokes to manifolds of arbitrary dimension.

We have already met one-forms, a term that is used in two ways. They are

either members of a particular cotangent space T ∗mM or else, analogous to a vector

field, an assignment of a covector in T ∗mM to each m ∈ M . A basic example of a

one-form is the differential of a real-valued function.

Definition 20. [10][Differential 1-form]

A 1-form α on a manifold M is a linear smooth function α(m) : TmM → R on

tangent vectors.

Definition 21. [10][Differential 2-form]

A 2-form α on a manifold M is a function α(m) : TmM × TmM → R that assigns

to each point m ∈M a skew-symmetric bilinear form on the tangent space TmM to

M at m.

Definition 22. [10][Differential k-form]

A k-form α on a manifold M is a function α(m) : TmM × ... × TmM (there are k

factors)→ R that assigns to each point m ∈M a skew-symmetric k-multilinear map

on the tangent space TmM to M at m.

A kth order differential form (k − form) on Rn is a sum of terms of the form

f(x)dxi1 ∧ dxi2 ∧ ... ∧ dxik .

subject to the rule

dxi ∧ dxj = −dxj ∧ dxi.
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Definition 23. [10][(0, k)-tensor]

Differential form of degree k without the skew-symmetry assumption

Definition 24. [10][Skew map]

A k-multilinear map α : V × ... × V → R is skew-symmetric when it changes sign

whenever two of its arguments are interchanged, that is, for all v1, ..., vk ∈ V ,

α(v1, ..., vi, ..., vj, ..., vk) = −α(v1, ..., vj, ..., vi, ..., vk).

3.4 Tensor and Wedge Products

Definition 25. [5][Tensor Product]

Let T and S be two tensors at x of types (k, l) and (p, q) respectively. Then the

tensor product T ⊗ S is the tensor at x of type (k + p, l + q) defined by

T ⊗ S(v1, ..., vk+p, w1, ..., wl+q) = T (v1, ..., vk, w1, ..., wl)

× S(vk+1, ..., vk+p, wl+1, ..., wl+q)

for all vectors v1, ..., vk+p ∈ TxM and all covectors w1, ..., wl+q ∈ T ∗xM .

Definition 26. [5] If α is a (0, k)-tensor on a manifold M and β is a (0, l)- tensor,

their tensor product α⊗ β is the (0, k + l)-tensor on M defined by

(α⊗ β)m(v1, ..., vk+l) = αm(v1, ..., vk)βm(vk+1, ..., vk+l)

at each point m ∈M .

Definition 27. [10][Alternation Operator A]

If t is a (0, t)-tensor, define the alternation operator A acting on t by

A(t)(v1, ..., vp) =
1

p!

∑
ρ∈Sp

sgn(ρ)t(vρ(1), ..., vρ(p)),

where sgn(ρ) is the sign of the permutation ρ,

sgn(ρ) =

{
+1, ρ is even;

−1, ρ is odd.
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and Sp is the group of all permutations of the set {1, 2, ..., p}. The operator A is

therefore skew-symmetrizes p-multilinear maps.

Definition 28. [10][Wedge Product]

If α is a k-form and β is a l-form on M , their wedge product α∧β is the (k+l)-form

on M defined by

α ∧ β =
(k + l)!

k!l!
A(α⊗ β).

For example, if α and β are one-forms, then

α ∧ β(v1, v2) = α(v1)β(v2)− α(v2)β(v1),

while if α is a 2-form and β is a 1-form, then

α ∧ β(v1, v2, v3) = α(v1, v2)β(v3) + α(v3, v1)β(v2) + α(v2, v3)β(v1).

Proposition 3.4.1. [10] The wedge product has the following properties:

(i) α ∧ β is associative: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

(ii) α ∧ β is homogeneous: (aα) ∧ β = a(α ∧ β) = α ∧ (aβ).

(iii) α ∧ β is distributive in α, β:

(aα1 + bα2) ∧ β = a(α1 ∧ β) + b(α2 ∧ β),

α ∧ (aβ1 + bβ2) = a(α ∧ β1) + b(α ∧ β2).

(iv) α∧ β is anticommutative: α∧ β = (−1)klβ ∧α, where α is a k-form and β

is an l-form.

(v) Let α be a k−form, if k is odd then α ∧ α = 0.

(vi) In any chart,

(dxi1 ∧ ... ∧ dxik) ∧ (dxj1 ∧ ... ∧ dxjl) = (dxi1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl).



3. Exterior Differential Calculus 17

Proof. The homogeneity and distributivity properties of the wedge product are im-

mediate from Definition 28. From this we can deduce the following expression for

the wedge product in local coordinates:

For α =
∑

i1,...,ik
αi1...ikdx

i1 ∧ ... ∧ dxik and β =
∑

j1,...,jl
βj1...jldx

j1 ∧ ... ∧ dxjl

α ∧ β =
1

k!l!

∑
i1,...,ik,j1,...,jl

αi1...ikβj1...jldx
i1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl .

The associativity property can now be checked straightforwardly. We derive the

anticommutativity property (iv):

If α =
∑
αi1...ikdx

i1 ∧ ... ∧ dxik and β =
∑
βj1...jldx

j1 ∧ ... ∧ dxjl , then

α ∧ β =
1

k!l!

∑
i1,...,ik,j1,...,jl

αi1...ikβj1...jldx
i1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl .

=
(−1)k

k!l!

∑
i1,...,ik,j1,...,jl

αi1...ikβj1...jldx
j1 ∧ dxi1 ∧ ... ∧ dxik ∧ dxj2 ∧ ... ∧ dxjl .

=
(−1)kl

k!l!

∑
i1,...,ik,j1,...,jl

αi1...ikβj1...jldx
j1 ∧ ... ∧ dxjl ∧ dxi1 ∧ ... ∧ dxik .

= (−1)klβ ∧ α.

For (v). α =
∑
αi1...ikdx

i1 ∧ ... ∧ dxik where k odd, then

α ∧ α = (−1)k
2

α ∧ α = 0

Finally, we derive the(vi). Choose a chart about x. Then

(dxi1 ∧ ... ∧ dxik) ∧ (dxj1 ∧ ... ∧ dxjl)

=
(k + l)!

k!l!
A((dxi1 ∧ ... ∧ dxik)⊗ (dxj1 ∧ ... ∧ dxjl).

=
(k + l)!

k!l!
A
( ∑
σ∈Sk,τ∈Sl

sgn(σ)sgn(τ) dxiσ(1) ⊗ ...⊗ dxiσ(k) ⊗ dxjτ(1) ⊗ ...⊗ dxjτ(l)
)
.

=
1

k!l!

∑
σ∈Sk,τ∈Sl

sgn(σ)sgn(τ) dxiσ(1) ∧ ... ∧ dxiσ(k) ∧ dxjτ(1) ∧ ... ∧ dxjτ(l) .

= dxi1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl .

�
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Theorem 3.1. [5] Differential forms α1, α2, ..., αr are linearly dependent if and only

if their wedge product vanishes,

α1 ∧ α2 ∧ ... ∧ αr = 0

Proof. If the differential forms are linearly dependent then without loss of generality

we may assume that α1 is a linear combination of the others,

α1 = a2α2 + a3α3 + ...+ arαr.

Hence

α1 ∧ α2 ∧ ... ∧ αr =

( r∑
i=2

aiαi

)
∧ α2 ∧ ... ∧ αr

=
r∑
i=2

±aiα2 ∧ ... ∧ αi ∧ αi ∧ ... ∧ αr

= 0

Conversely, suppose α1, α2, ..., αr are linearly independent, then there exists a basis

{ej} such that

e1 = α1, e2 = α2, .... , er = αr.

Since e1 ∧ e2 ∧ ... ∧ er is a basis vector it cannot vanish. �

3.5 Examples of Algebraic Computation of Products

Example 3.2. [5]Consider the 1−forms α = xdx+ ydy, β = ydx+ xdy.

α ∧ β = (xdx+ ydy) ∧ (ydx+ xdy)

= xydx ∧ dx+ x2dx ∧ dy + y2dy ∧ dx+ xydy ∧ dy.

= (x2 − y2)dx ∧ dy.



3. Exterior Differential Calculus 19

Example 3.3. [5]Let α = xdx+ ydy be a 1−form, β = xzdx ∧ dz + yzdy ∧ dz be a

2−form.

α ∧ β = (xdx+ ydy) ∧ (xzdx ∧ dz + yzdy ∧ dz)

= x2zdx ∧ dx ∧ dz + xyzdx ∧ dy ∧ dz

+ yxzdy ∧ dx ∧ dz + y2zdy ∧ dy ∧ dz.

= (xyz − xyz)dx ∧ dy ∧ dz = 0.

Hence,

(xdx+ ydy) and (xzdx ∧ dz + yzdy ∧ dz)

are linearly dependent.

3.6 Exterior Derivative

The exterior derivative dα of a k-form α on a manifold M is the (k+ 1)-form on M

determined by the following proposition:

Proposition 3.6.1. [10]There is a unique mapping d from k-forms on M to (k+1)-

forms on M such that:

(i) If α is a 0-form (k = 0), then df is the one-form that is the differential of f.

df =
n∑
i=1

∂f

∂xi
dxi.

(ii) If α and β are k-form fields, and c1 and c2 are constants, then

d(c1α + c2β) = c1(dα) + c2(dβ).

Taking an exterior derivative thus is a linear operation.

(iii) If α is a k-form given in coordinates by

α =
∑

αi1...ikdx
i1 ∧ ... ∧ dxik (sum on i1 < ... < ik),
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then the coordinate expression for the exterior derivative is

dα =
∑ ∂αi1...ik

∂xj
dxj∧dxi1∧ ...∧dxik (sum on all j and i1 < ... < ik) (3.6.1)

(iv) The (k + 2)−form d2f = d(df) obtained by taking the exterior derivative of a

k−form f twice is a constant form having the value 0 (a zero form).

d(df) =
∑
i

d

(
∂f

∂xi

)
∧ dxi =

∑
i

(∑
j

∂2f

∂xi∂xj
dxj
)
∧ dxi

=
∑
i<j

(
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

)
dxi ∧ dxj = 0.

A k-form is called closed if dα = 0 and exact if there is a (k − 1)-form β

such that α = dβ, we get the fundamental and remarkable property of exterior

differentiation :

Proposition 3.6.2. [10][Poincaré’s Lemma]

A closed form is locally exact; that is, if dα = 0, there is a neighborhood about each

point on which α = dβ.

Theorem 3.2. [5][Cartan’s Magic Formula]

The exterior derivative of the wedge product of a k-form α and an l-form β is given

by

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ).

Proof.

By the definition of wedge product it suffices to show the rule for elementary form

α =
∑
i1,...,ik

αi1...ikdx
i1 ∧ ... ∧ dxik and β =

∑
j1,...,jk

βj1...jldx
j1 ∧ ... ∧ dxjl .

and their wedge product

α ∧ β =
∑
i1,...,ik
j1,...,jl

αi1...ikβj1...jldx
i1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl .
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d(α ∧ β) =
∑ n∑

h=1

∂(αi1...ikβj1...jl)

∂xh
dxh ∧ dxi1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl .

=
n∑
h=1

(
∂αi1...ik
∂xh

βj1...jl +
∂βj1...jl
∂xh

αi1...ik

)
dxh ∧ dxi1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl .

=

( n∑
h=1

∂αi1...ik
∂xh

dxh ∧ dxi1 ∧ ... ∧ dxik
)
∧
(∑

βj1...jldx
j1 ∧ ... ∧ dxjl

)
.

+

(∑
αi1...ikdx

i1 ∧ ... ∧ dxik
)
∧ (−1)k

( n∑
h=1

∂βj1...jl
∂xh

dxh ∧ dxj1 ∧ ... ∧ dxjl
)
.

=(dα) ∧ β + (−1)kα ∧ (dβ).

�

3.7 Examples of Algebraic Computation of Derivatives

Example 3.4. [5] If α =
∑n

i=1 fidxi is a 1−form on Rn, then

dα =
n∑
i=1

dfi ∧ dxi =
n∑

i,j=1

∂fi
∂xj

dxj ∧ dxi

=
∑

1≤i≤j≤n

∂fi
∂xj

dxj ∧ dxi +
∑

1≤j≤i≤n

∂fi
∂xj

dxj ∧ dxi

= −
∑

1≤i≤j≤n

∂fi
∂xj

dxi ∧ dxj +
∑

1≤i≤j≤n

∂fj
∂xi

dxi ∧ dxj (3.7.1)

=
∑

1≤i≤j≤n

(
∂fj
∂xi
− ∂fi
∂xj

)
dxi ∧ dxj

where in (3.7.1) in the first sum we used the alternating property and in the second

sum we interchanged the roles of i and j.
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Example 3.5. [5] If α =
∑

1≤i≤j≤n fi,jdxi ∧ dxj is a 2−form on Rn, then

dα =
∑

1≤i≤j≤n

dfi,j ∧ dxi ∧ dxj =
∑

1≤i≤j≤n

n∑
k=1

∂fi,j
∂xk

dxk ∧ dxi ∧ dxj

=
∑

1≤k<i<j≤n

∂fi,j
∂xk

dxk ∧ dxi ∧ dxj +
∑

1≤i<k<j≤n

∂fi,j
∂xk

dxk ∧ dxi ∧ dxj

+
∑

1≤i<j<k≤n

∂fi,j
∂xk

dxk ∧ dxi ∧ dxj

=
∑

1≤i<j<k≤n

∂fj,k
∂xi

dxi ∧ dxj ∧ dxk +
∑

1≤i<j<k≤n

∂fi,k
∂xj

dxj ∧ dxi ∧ dxk

+
∑

1≤i<j<k≤n

∂fi,j
∂xk

dxk ∧ dxi ∧ dxj. (3.7.2)

We remark that that the last equation can be simplified to

dα =
∑

1≤i<j<k≤n

(
∂fi,j
∂xk

− ∂fi,k
∂xj

+
∂fj,k
∂xi

)
dxi ∧ dxj ∧ dxk. (3.7.3)

Here in (3.7.2) we rearranged the subscripts(for instance, in the first term we rela-

belled k → i, i→ j, j → k) and in (3.7.3) we applied the alternating property.

Example 3.6. [5]Let α = xydx− xydy + xy2z3dz

d(xydx− xydy + xy2z3dz) =d(xy) ∧ dx− d(xy) ∧ dy + d(xy2z3) ∧ dz.

=(ydx+ xdy) ∧ dx− (ydx+ xdy) ∧ dy

+(x(3y2z2dz + 2yz3dy) + y2z3dx) ∧ dz.

=(ydx+ xdy) ∧ dx− (ydx+ xdy) ∧ dy

+(3xy2z2dz + 2xyz3dy + y2z3dx) ∧ dz.

=ydx ∧ dx+ xdy ∧ dx− ydx ∧ dy − xdy ∧ dy

+3xy2z2dz ∧ dz + 2xyz3dy ∧ dz + y2z3dx ∧ dz.

=xdy ∧ dx− ydx ∧ dy + 2xyz3dy ∧ dz + y2z3dx ∧ dz.

=(−x− y)dx ∧ dy + y2z3dx ∧ dz + 2xyz3dy ∧ dz.
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Example 3.7. [5] In this example we find the exterior derivative of the 2−form

α = x2(y + z2)dx ∧ dy + z(x3 + y)dy ∧ dz

d(x2(y + z2)dx ∧ dy + z(x3 + y)dy ∧ dz) =d(x2(y + z2)) ∧ dx ∧ dy

+d(z(x3 + y)) ∧ dy ∧ dz.

=2zx2dz ∧ dx ∧ dy + 3zx2dx ∧ dy ∧ dz.

=5zx2dx ∧ dy ∧ dz.

3.8 Lie Derivative

The Lie derivative can also be defined on differential forms. In this context, it is

closely related to the exterior derivative. Both the Lie derivative and the exte-

rior derivative attempt to capture the idea of a derivative in different ways. These

differences can be bridged by introducing the idea of an anti-derivation or equiv-

alently an interior product, after which the relationships fall out as a set of identities.

Definition 29. [4][Interior Product]

Let ω be an k−form and X be a vector field on M . Define the interior product

ιX : Ωk(M)→ Ωk−1(M)

by

(ιXω)(Y1, ..., Yk−1) = ω(X, Y1, ..., Yk−1)

The differential form ιXω is also called the contraction of ω with X.

That is, ιX is R−linear,and

ιX(ω ∧ η) = (ιXω) ∧ η + (−1)kω ∧ ιXη

The Lie derivative of an ordinary function f is just the contraction of the

exterior derivative with the vector field X

LXf = ιXdf
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Lemma 3.3. [4] Let ω be a differential form of degree l and X be any vector field,

then the Lie derivative has the following properties:

1. LXω is of the same degree as ω.

2. d(LXω) = LXdω.

3. LXω = ιXdω + d(ιXω).

4. Lx(ω ∧ θ) = LXω ∧ θ + ω ∧ LXθ.

5. LfXω = fLXω + df ∧ ιXω

where ι is the interior product between ω and X and d is the exterior derivative.

Theorem 3.4. [4] The differential 1−form

ω(x) =
n∑
i=1

ωi(x)dxi

is k−homogeneous if and only if

LXω = (k + 1)ω

where X =
∑n

i=1 x
i ∂
∂xi
.

Proof. Let ω and X be defined as above. Then, recall that

LXω = ιXdω + d(ιXω)

We calculate each term on the right hand side. It follows that

ιXdω =
n∑

i,j=1

∂ωi
∂xj

xjdxi −
n∑

i,j=1

∂ωi
∂xj

xidxj. (3.8.1)

Similarly, we have

ιXω =
∑
i

ωi(x)xi
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Then

d(ιXω) =
n∑

i,j=1

∂ωi
∂xj

xidxj +
∑
i

ωi(x)dxi (3.8.2)

From (3.8.1) and (3.8.2), we get

LXω =
n∑

i,j=1

∂ωi
∂xj

xjdxi +
∑
i

ωi(x)dxi

By euler’s equation, we conclude that ω(x) is k−homogeneous if and only if

LXω = (k + 1)ω.

�

3.9 Integrability of Homogeneous Differential Forms

Lemma 3.5. [4] If ω is a C1, k−homogeneous 1−form such that ιXω = 0 then

ιXdω = (k + 1)ω.

Proof. k−homogeneity implies that

LXdω = (k + 1)ω.

On the other hand

(k + 1)ω = LXω = ιXdω + d(ιXω)

since ιXω = 0,

ιXdω = (k + 1)ω.

�

Proposition 3.9.1. [4] Let ω be a C1 differential 1−form such that ιXω = 0. Then

ω ∧ dω = 0 with ω k−homogeneous if and only if there is a 1−form β such that

dω = β ∧ ω with ιXβ = k + 1
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Proof. If dω = β ∧ ω, then

ω ∧ dω = 0.

Moreover,

ιXdω = (ιXβ)ω − β(ιXω) = (k + 1)ω,

but

LXdω = ιXdω + d(ιXω) = (k + 1)ω.

This proves the k− homogeneity of ω. Conversely, if ω ∧ dω = 0, then there exists

a 1−form β such that

dω = β ∧ ω.

Hence,

ιXdω = (ιXβ)ω − β(ιXω)

by using Lemma 3.5,

ιXdω = (ιXβ)ω = (k + 1)ω.

Then

ιXβ = k + 1.

�

Theorem 3.6. [4] Let ω be a C1, k−homogeneous differential 1− form such that

ω ∧ dω = 0 in a neighbourhood U of some point x̄. Then, there exists a (k +

1)−homogeneous function f and a 0−homogeneous function g, defined in a possibly

smaller neighbourhood V ⊂ U such that ω(x) = f(x)dg(x).

Proof. Suppose that ω ∧ dω = 0. Then, there exist two functions f and g such that

ω = fdg.

Since

ιXω = 0,

then

ιXdg = 0;
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that is, g is 0−homogeneous. We have also,

dω = df ∧ dg

and

dg = ω/f.

It follows that

dω =
df

f
∧ ω.

Apply the vector field X to both sides of the previous equation and use Lemma

(3.5) to get

(k + 1)ω = ιX
df

f
ω.

Thus, ιXdf = (k + 1)f , which proves that f(x) is (k + 1)−homogeneous. �



4. SINGLE CONSTRAINT AND NON-HOMOGENEOUS

MODELS

The standard utility maximization problem under the budget constraint takes the

form

P
{

max
x

U(x) ; pTx = w(p),

where U is utility function that satisfies certain smoothness, monotonicity, and

concavity conditions, and w(p) is convex and homogeneous of degree one. The

solution of the above maximization problem was characterized in Aloqeili[2]. We

state here the result that concerns the homogeneous case.

Theorem 4.1. Let x(p) be given, and define pTx(p) = w(p). Suppose w(p) is convex

and homogeneous of degree one. Then, there exist function λ(p) and U(x) such that

DxU(x(p)) = λ(p)p in the neighbourhood of a point p̄ if and only if there is some

vector β(p) with

pTβ(p) = 1

such that for all i, j we have:

∂xi

∂pj
− βi

∑
k

∂xk

∂pj
pk =

∂xj

∂pi
− βj

∑
k

∂xk

∂pi
pk

in a neighbourhood of p̄

In the general case, we need to characterize the solution of a multi-constraint

optimization problem that takes the form:

P
{

max
x

f(x) ; Ax ≤ C(A),
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where f is a function satisfies the following conditions:

1. f is strictly increasing with respect to each coordinate of the vector x.

2. the Hessian matrix D2
xf is negative definite on the subspace {Dxf}⊥.

3. f is of class C2.

and for each i ∈ {1, ...,m}, the function Ci has the following properties

1. Ci :Rn
++ → R++.

2. Ci is a convex function of ai.

3. Ci is of class C2.

4. Ci is not homogeneous of degree one in ai; that is, (ai)TDaiC
i − Ci(ai) 6= 0.

Aloqeili[3], derived necessary and sufficient conditions for a given function to

be the solution of this problem.

Define a family of 1-forms Ωk, k = 1, ...,m, by

Ωk =
m∑
s=1

λskω
s,

where ωs is the 1-form defined by

ωi =
n∑
j=1

(
∂Ci

∂aij
− xj

)
daij

and λsk are given functions, x is a solution of the above multi-constraint problem.

Theorem 4.2. Given the family of 1-form Ω1, ...,Ωm. Then Ωk∧dΩk = 0 if and only

if for any k′ ∈ {1, ...,m}, the following conditions are satisfied for all 1 ≤ i, s ≤ m,

1 ≤ j, l ≤ n.

∂λik
∂asl

∑
r

∂xr

∂aij
air − λik

∂xj

∂asl
+

ηk′

λkk′

(∑
j′

∂λsk
∂ak

′
j′
ak

′

j′

∑
r

∂xr

∂asl
asr − λsk

∑
j′

∂xl

∂ak
′
j′
ak

′

j′
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− 1

ηk′

∂λk′k
∂asl

+ λk′k
∑
j

∂xj
′

∂asl
ak

′

j′

)
λik

n∑
r=1

∂xr

∂aij
air

=
∂λsk
∂aij

∑
r

∂xr

∂asl
asr − λsk

∂xl

∂aij
+

ηk′

λkk′

(∑
j′

∂λik
∂ak

′
j′
ak

′

j′

∑
r

∂xr

∂aij
air − λik

∑
j′

∂xj

∂ak
′
j′
ak

′

j′

− 1

ηk′

∂λk′k
∂aij

+ λk′k
∑
j′

∂xj
′

∂aij
ak

′

j′

)
λsk

n∑
r=1

∂xr

∂asl
asr (4.0.1)

Let x(A) be a solution of problem, C(A) = Ax(A), then n × n matrix M i

defined by

M i
jl =

∑
r

∂2xr

∂ail∂a
i
j

air +
∂xl

∂aij
+
∂xj

∂ail

and T i be the matrix defined by

T ijl =
∑
r

∂2xr

∂ail∂a
i
j

air +
∂xl

∂aij
.

Theorem 4.3. Let x(A) ∈ Rn
++, λik(A) > 0 be given functions defined on a neigh-

bourhood U of some point Ā ∈ Rmn
++. Define C(A) = Ax(A). Suppose that the

following conditions are satisfied in U for all i, k = 1, ...,m:

1. λtiλsk = λsiλtk for all 1 ≤ i, k, s, t ≤ m.

2. Conditions (4.0.1)

3. The matrix M i is positive semi-definite.

4. The restriction of the matrix T i to {(ai)TDaix}⊥ is a positive definite.

Then, there exist positive functions λ1, ....., λm and a function V which is quasi-

convex with respect to ai for each i, defined in a neighbourhood V ⊂ U such

that DaiV = λi(DaiC
i − x).
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5.1 Setting up The Model

We consider a multi-constraint maximization problem of the form

(P)
{

max
x

f(x) ; Ax = C(A),

where f is a function that satisfies certain regularity and convexity conditions that

are specified later, A is an m× n matrix of rank m and C : Rm×n
++ → Rm

++ is a given

mapping. The ith constraint takes the form (ai)Tx = Ci(A) where ai is the ith row

of the matrix A. Define the Lagrangian function

L(x, λ) = f(x) +
m∑
k=1

λk

(
Ck(A)−

n∑
l=1

akl x
l

)
with x ∈ Rn

++, and λ ∈ Rm
++. The first order conditions for interior maximum give

∂f

∂xj
=

m∑
k=1

λka
k
j , j = 1, ...., n

Ax = C(A).

Define the value function of this problem by

V (A) = max
x

{
f(x) +

m∑
k=1

λk

(
Ck(A)−

n∑
l=1

akl x
l

)}
. (5.1.1)

If the functions C1(a1), ...., Cm(am) are convex on Rn
++ then the value function

V (a1, ..., am) is quasi-convex with respect to each ai for i = 1, ...,m.
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Differentiating the function V (A) with respect to aij and using the envelope theorem

we get
∂V

∂aij
=

m∑
k=1

λk
∂Ck

∂aij
− λixj. (5.1.2)

We suppose that Ck is a function of the vector ak ∈ Rn
++ only, where ak is

the kth row of the matrix A. Moreover, we assume that each component of the

mapping C(A) is homogeneous of degree one. This implies, in particular that,

the functions x(A) and V (A) are homogeneous of degree zero and the Lagrange

multiplier corresponding to the ith constraint, λi(A) is homogeneous of degree -1 in

ai, and of degree 0 in ak for i 6= k.

We adopt the following assumptions on the mapping C.

Assumption 5.1. For each i ∈ {1, ....,m}, we assume that the function Ci has the

following properties:

1. Ci : Rn
++ → R++ is a function of ai only.

2. Ci is a convex function of ai.

3. Ci is of class C2.

4. Ci is homogeneous of degree one in ai; that is, (ai)TDaiC
i − Ci(ai) = 0.

We consider the following assumptions on the objective function f .

Assumption 5.2. Assume the function f satisfies the following conditions:

1. f is strictly increasing with respect to each coordinate of the vector x.

2. the Hessian matrix D2
xf is negative definite on the subspace {Dxf}⊥.

3. f is of class C2.
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By applying the implicit function theorem, we show that the solution of the above

maximization problem as well as the associated vector of Lagrange multipliers are of

class C2.

Assumption (1) implies that DaiC
k = 0 if i 6= k which reduces equation (5.1.2)

to

Lemma 5.1. The partial derivative of the value function V (A) with respect to aij is

given by
∂V

∂aij
= λi

(
∂Ci

∂aij
− xj

)
. (5.1.3)

Define a family of differential 1-forms ω1, ...., ωm by

ωi =
n∑
j=1

(
∂Ci

∂aij
− xj

)
daij. (5.1.4)

The differential of V is given by

dV =
∑ ∂V

∂aij
daij.

It follows that the differential of V , can be written as:

dV =
m∑
i=1

λiω
i.

Notice that

dωi =
∑
j,l

∂2Ci

∂ail∂a
i
j

dail ∧ daij −
∑
j,k,l

∂xj

∂akl
dakl ∧ daij.

The coefficients in the first summation are symmetric, so we end up with

dωi = −
∑
j,k,l

∂xj

∂akl
dakl ∧ daij.

The ith constraint is (ai)Tx(A) = Ci(ai). Differentiating both sides of this equality

with respect to aij
∂Ci

∂aij
=

n∑
r=1

∂xr

∂aij
air + xj
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and rearranging the above formula, we get:

∂Ci

∂aij
− xj =

n∑
r=1

∂xr

∂aij
air. (5.1.5)

Using this result, the 1-form ωi can be written as

ωi =
n∑

r,j=1

∂xr

∂aij
airda

i
j (5.1.6)

Now, our inverse problem can be stated as follows:

• We observe the function xj(A), j = 1, ..., n from Rmn
++ to R++.

• Then we define the functions Ci(ai) = (ai)Tx(A).

• We observe also a family of positive functions λik using symmetry conditions

that will be given below.

• Our goal is to find a function f(x), by first finding the value function V (A),

such that x(A) ∈ argmax {f(x)|Ax = C(A)} and V (A) = f(x(A)).

To allow for better follow up of our exposition, we will restrict the ranges of the

subscripts and superscripts used in the sequel as follows, 1 ≤ i, k, k′, s, t ≤ m and

1 ≤ j, j′, l, l′, r ≤ n. In what follows, δik denotes the Kronecker symbol which equals

one if i = k and zero otherwise.

5.2 Preliminary Results

In this section, we give some important preliminary results that will be used to solve

the inverse problem.

Theorem 5.2. The family of functions λi, i, k = 1, ...,m have the following homo-

geneity properties:
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• Homogeneous of degree -1 in ai.

• Homogeneous of degree 0 in ak , k 6= i.

Proof.
∂V

∂aij
= λi

(
∂Ci

∂aij
− xj

)
.

The function ∂V
∂aij

is homogeneous of degree −1 in ai, and the functions ∂Ci

∂aij
, xj

homogeneous of degree 0 in ai. Thus λi is homogeneous of degree −1 in ai and

homogeneous of degree 0 in ak, k 6= i. �

Theorem 5.3. Let V (A) be the value function given in (5.1.1). Then, V (A) has

the following properties:

(a) Positively homogeneous of degree zero if C(A) is positively homogeneous of

degree one.

(b) Quasi-convex if C(A) is convex.

Proof. (a) Suppose C(A) is homogeneous of degree one, then Ax = C(A) is equiv-

alent to

tAx = tC(A) = C(tA).

We need to show V (A) = V (tA), ∀t > 0. Note that

V (A) = {max f(x) s.t Ax = C(A)}

V (tA) = {max f(x) s.t tAx = C(tA)},

but

C(tA) = tC(A)
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by homogeneity of degree one.

V (tA) = {max f(x) s.t tAx = C(tA) = tC(A)}.

= {max f(x) s.t Ax = C(A)}.

= V (A).

(b) We prove that the value function is quasi-convex. Let

Â = (â1, ..., âm)T and Ā = (ā1, ..., ām)T . Consider the convex combinations:

Ã = (ã1, ..., ãm)T = κ(â1, ..., âm)T + (1− κ)(ā1, ..., ām)T

for κ ∈ (0, 1). Suppose that V (Â) ≤ U and V (Ā) ≤ U . We want to show that

V (Ã) ≤ max{V (Â), V (Ā)}.

Introduce the following sets

Ŝ = {x|Âx ≤ C(Â)}, S̄ = {x|Āx ≤ C(Ā)}, S̃ = {x|Ãx ≤ C(Ã)}

We claim that S̃ ⊂ Ŝ ∪ S̄.

Indeed, if this is not the case, then there exists x such that Âx > C(Â) and

Āx > C(Ā) whereas Ãx ≤ C(Ã). It follows that for any κ ∈ (0, 1), κÂx >

κC(Â) and (1−κ)Āx > (1−κ)C(Ā). Adding up the last two inequalities and

using the convexity of C(A), we get

Ãx = κÂ+ (1− κ)Ā)x > κC(Â) + (1− κ)C(Ā) ≥ C(κÂ+ (1− κ)Ā) = C(Ã).

Hence, Ãx > C(Ã) which is a contradiction, so S̃ ⊂ Ŝ ∪ S̄ as announced. This

result implies that

V (Ã) = max
x∈S̃

f(x) ≤ max
x∈Ŝ∪S̄

f(x) = max{V (Â), V (Ā)},

which means that V (A) is quasi-convex.

�
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Theorem 5.4. If the function f(x) satisfies Assumption (5.2) and C(A) is of class

C2, then the map A→ x(A) and the function A→ λ(A) are of class C2.

Proof. Recall that

V (A) = max
x

{
f(x) +

m∑
k=1

λk

(
Ck(A)−

n∑
l=1

akl x
l

)}
.

Derive with respect to x and λ,we get the first order conditions:

Dxf − ATλ =
−→
0 , (5.2.1)

Ax− C(A) =
−→
0 .

Let F be defined by F (A, x, λ) = (F1(A, x, λ), F2(a, x, λ)), where

F1(A, x, λ) = Dxf − ATλ , and F2(A, x, λ) = Ax− C(A) .

Dx,λF =

(
DxF1 DλF1

DxF2 Dλf2

)
=

(
D2
xf(x) −AT

A 0

)
.

We need to show Dx,λF is nonsingular to apply implicit function theorem.

Let ζ = (ζ1, ζ2)T where ζ ∈ Rn+m. We will show that the linear system (Dx,λF )ζ =
−→
0 has only the zero solution. Let (ζ1, ζ2)T 6= −→0 ,(

D2
xf(x) −AT

A 0

)(
ζ1

ζ2

)
=

(
0

0

)

D2
xf(x)ζ1 − AT ζ2 =

−→
0 (1)

Aζ1 =
−→
0 (2)

It follows that ζ1 ∈ N(A) = {∇f}⊥ which we get be multiplying (5.2.1) from left

by ζ1T . Multiply the first equation by ζ1T , we get

ζ1T (D2
xf(x))ζ1 = 0
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which is a contradiction to the assumption of the Hessian matrix of f is negative

definite on {∇f}⊥. Thus, ζ1 =
−→
0 and ζ2 =

−→
0 , then the homogeneous system

Dx,λFζ = 0 has only the trivial solution ζ = (ζ1, ζ2)T = (0, 0)T , so the matrix Dx,λF

is nonsingular and we can apply the implicit function theorem which guarantees that

x(A) and λ(A) are of class C2. �

Lemma 5.5. Let x(A) be a solution of a multi-constraint maximization problem of

the above type, then

1.
n∑
l=1

∂xl

∂aij
akl = 0 if i 6= k.

2.
n∑
j=1

(
∂Ci

∂aij
− xj

)
aij = (ai)T (Daix)ai = 0.

Proof. Differentiate the kth constraint (ak)Tx = Ck(ak) with respect to aij, we get

n∑
j=1

∂xl

∂aij
akl + xjδik =

∂Ck

∂aij
δik.

Condition (a) follows when i 6= k. If i = k, then multiply both sides of the last

equality by aij, summing over j, we find

∑
j

(
∂Ci

∂aij
− xj

)
aij =

n∑
j,r=1

∂xr

∂aij
aija

i
r.

Now use homogeneity of x to get (b). �

5.3 Mathematical Integration: Necessary and Sufficient Conditions

Our objective now is to give sufficient conditions and to express them as a system

of partial differential equations that have to be satisfied by the coefficient function

λik and the function x(A).
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Definition 30 (Coefficient Function λik).

Let λik be the function defined by λik = λi/λk such that λii = 1 for every i = 1, ....,m,

λikλki = 1.

The following result follows from homogeneity properties of λi, i = 1, ...,m.

Lemma 5.6. The family of functions λik, i, k = 1, ...,m have the following homo-

geneity properties:

a. Homogeneous of degree -1 in ai.

b. Homogeneous of degree 1 in ak.

c. Homogeneous of degree 0 in ak
′
, k′ 6= i, k.

That is, ∑
l

∂λik
∂ak

′
l

ak
′

l = λik(δ
k′

k − δk
′

i ).

Equation (5.1.3) implies that

1

λk

∂V

∂aij
= λik

(
∂Ci

∂aij
− xj

)
. (5.3.1)

Define a family of 1-forms Ωk, k = 1, ...,m, by

Ωk =
m∑
s=1

λskω
s, (5.3.2)

where ωs is the 1-form defined by (5.1.4) or the equivalent form (5.1.6). Notice

that Ω1, ....,Ωm are defined using observable functions only. Then, equation (5.3.1)

can be written as µkdV = Ωk which is equivalent to Ωk ∧ dΩk = 0. Clearly, the

family of 1-forms defined by (5.3.2) are collinear to the same gradient dV . The last

equation gives the necessary and sufficient conditions for mathematical integration.

This result stems from the underlying structure of the optimization problem. The

following result proves that the 1-forms Ω1, ....,Ωm are proportional.
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Lemma 5.7. [3] Let Ω1, ....,Ωm be the family of 1-forms defined by (5.3.2) with

λik = λi
λk

, then

Ωi ∧ Ωk = 0

for all i, k = 1, ...m.

Proof. Using the definition of Ωk in (5.3.2) we have

Ωi ∧ Ωk =
m∑

s,t=1

(λtiλsk)ω
t ∧ ωs.

=
∑
t<s

(λtiλsk − λsiλtk)ωt ∧ ωs.

The coefficients λtiλsk − λsiλtk are identically zero since

λtiλsk
λsiλtk

=
λtλs
λiλk

λiλk
λsλt

= 1.

�

This is a general result that is true for any 1-forms defined by equation (5.3.2)

with coefficient λik = λi/λk. This result is obvious if Ωk = µkdV .

Theorem 5.8. [3] Given the family of 1-forms Ω1, ....,Ωm defined above, then there

exist m+1 functions µ1, ....., µm and V , defined in a neighbourhood U of some element

Ā ∈ Rmn
++, such that Ωk = µkdV for k = 1, ....,m if and only if the condition

Ωk ∧ dΩk = 0 holds in a neighbourhood V of Ā with U ⊂ V.

Proof. Using Darboux Theorem [6], Ωk ∧ dΩk = 0 if and only if there exist two

functions µk and Vk such that

Ωk = µkdVk.

Lemma 5.7 implies that

Ωi ∧ Ωk = µiµkdVi ∧ dVk = 0.

Therefore,

dVk = φik(A)dVi , ∀ i, k = 1, ...,m
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for some function φik. So we can set

dV1 = ... = dVm = dV.

�

We also need the following lemma.

Lemma 5.9. [3] Let Ω1, ...,Ωm be the family of differential 1-forms defined in

(5.3.2). Then, if Ωi ∧ dΩi = 0 for some i, then

Ωk ∧ dΩk = 0

for any k ∈ {1, ...,m}.

Proof. Let i, k ∈ {1, ...,m}. Assume that

Ωi ∧ dΩi = 0.

Note that Ωi ∧ Ωk = 0 if and only if Ωk = ϕΩi for some function ϕ.

Taking the exterior derivative we get

dΩk = ϕdΩi + dϕ ∧ Ωi.

Multiply both sides of the last equation by Ωk and using the fact that Ωk = ϕΩi,

we find that

Ωk ∧ dΩk = ϕ2Ωi ∧ dΩi + ϕΩi ∧ dϕ ∧ Ωi = 0.

�

Clearly, the 1-forms Ω1, ...,Ωm belong to the space of 1-forms spanned by

ω1, ..., ωm. Moreover, it follows from the definition of ω1, ..., ωm that they are linearly

independent since ω1∧, ...,∧ωm 6= 0. Let us consider the following result.

Lemma 5.10. [3] Let β1, ..., βm belong to the subspace of 1-forms spanned by α1, ..., αm.

Suppose that α1, ..., αm are linearly independent; that is, α1 ∧ ... ∧ αm 6= 0.

Then βi ∧ βk = 0 if and only if there exist Cm
2 rank-one symmetric m×m matrices

Mik = (bisbkt), such that βi =
∑m

s=1 bisα
s.
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Proof. Since β1, ..., βm belong to the linear span of α1, ..., αm then for any i there

exist m functions bi1, ..., bim such that

βi =
m∑
s=1

bisα
s.

Therefore,

βi ∧ βk =
∑
s,t

bisbktα
s ∧ αt =

∑
s<t

(bisbkt − bitbks)αs ∧ αt.

Thus

βi ∧ βk = 0

if and only if

bisbkt = bitbks.

�

Theorem 5.11. Let Ω1, ...,Ωm be the family of 1-forms, then for any k = 1, ...,m

Ωk ∧ dΩk = 0

if and only if there exists a 1-form αk such that

dΩk = αk ∧ Ωk. (5.3.3)

Our objective now is to explicit the necessary and sufficient conditions for math-

ematical integration given in Theorem (5.8).

Theorem 5.12. Given the family of 1-forms Ω1, ...,Ωm. Then

Ωk ∧ dΩk = 0

if and only if

1. there exist a set of rank one n × m matrices R1, R2, ..., Rm that satisfy the

conditions Rk(a
i)T = δik.
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2. for all 1 ≤ i, s ≤ m , 1 ≤ j, l ≤ n the following conditions are satisfied.

∂λik
∂asl

∑
r

∂xr

∂aij
air − λik

∂xj

∂asl
−Rl

ks(A)λik
∑
r

∂xr

∂aij
air

=
∂λsk
∂aij

∑
r

∂xr

∂asl
asr − λsk

∂xl

∂aij
−Rj

ki(A)λsk
∑
r

∂xr

∂asl
asr. (5.3.4)

Proof. 1. Recall that Ωk ∧ dΩk = 0 if and only if there exists a 1-form αk such

that

dΩk = αk ∧ Ωk. (5.3.5)

The 1-form αk can be identified (mod Ωk). Notice that

Ωk =
m∑
i=1

λik

n∑
r,j=1

∂xr

∂aij
airda

i
j.

Define a family of vector fields by

ξi =
n∑
j=1

aij
∂

∂aij
.

Then,

< Ωk, ξ
k′ > = <

m∑
i=1

λik

n∑
r,j=1

∂xr

∂aij
airda

i
j,

n∑
j=1

ak
′

j

∂

∂ak
′
j

>

= λk′k

n∑
r,j=1

∂xr

∂ak
′
j

ak
′

r a
k′

j = 0.

Using (5.1.5), we can write

< Ωk, ξ
k′ >= λk′k

n∑
j=1

(
∂Ck′

∂ak
′
j

− xj
)
ak

′

j = 0.

To find a 1-form αk that satisfies the equation dΩk = αk ∧ Ωk, we apply both

sides of this equation to the vector field ξk
′
, so we have

< dΩk, (ξ
k′ , .) >=< αk, ξ

k′ > Ωk − αk < Ωk, ξ
k′ > . (5.3.6)
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But < Ωk, ξ
k′ >= 0, ∀k, k′. Therefore, equality (5.3.6) becomes

< dΩk, (ξ
k′ , .) >=< αk, ξ

k′ > Ωk.

Now

Ωk =
m∑
i=1

λik

n∑
j=1

(
∂Ci

∂aij
− xj

)
daij.

Performing the exterior derivative, we get

dΩk =
∑
i,j,s,l

λik

(
∂2Ci

∂asl ∂a
i
j

− ∂xj

∂asl

)
dasl ∧ daij +

∑
i,j,s,l

∂λik
∂asl

(
∂Ci

∂aij
− xj

)
dasl ∧ daij

Using (5.1.5), we can write dΩk as

dΩk =
∑
i,j,s,l

(
∂λik
∂asl

∑
r

∂xr

∂aij
air − λik

∂xj

∂asl

)
dasl ∧ daij

Now, we apply the 2-form dΩk to the vector field ξk
′
, we find that

< dΩk, (ξ
k′ , .) > =

∑
i,j,l

(
∂λik
∂ak

′
l

∑
r

∂xr

∂aij
air − λik

∂xj

∂ak
′
l

)
ak

′

l da
i
j

−
∑
j,s,l

(
∂λk′k
∂asl

∑
r

∂xr

∂ak
′
j

ak
′

r − λk′k
∂xj

∂asl

)
ak

′

j da
s
l

=
∑
i,j,l

∂λik
∂ak

′
l

ak
′

l

∑
r

∂xr

∂aij
airda

i
j + λk′k

∑
j,s,l

∂xj

∂asl
ak

′

j da
s
l .

Then, using Lemma (5.6) we have∑
l

∂λik
∂ak

′
l

ak
′

l = λik(δ
k′

k − δk
′

i ).

= δk
′

k

∑
i

λik
∑
r,j

∂xr

∂aij
airda

i
j + λk′k

(∑
j,l

∂xj

∂ak
′
l

ak
′

j da
k′

l −
∑
j,r

∂xr

∂ak
′
j

ak
′

r da
k′

j

)
.

We end up with

< dΩk, (ξ
k′ , .) >= δk

′

k

∑
i

λik
∑
r,j

∂xr

∂aij
airda

i
j = δk

′

k Ωk.
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Depending on the above formulas, we get

< dΩk, (ξ
k′ , .) >=< αk, ξ

k′ >
∑
i

λik
∑
r,j

∂xr

∂aij
airda

i
j = δk

′

k

∑
i

λik
∑
r,j

∂xr

∂aij
airda

i
j.

We conclude that the differential 1-form αk must satisfy < αk, ξ
k′ >= δk

′

k by

seeting αk =
∑

s,lR
l
ks(A)dasl .

2. Now equation (5.3.5) can be written as∑
i,j,s,l

(
∂λik
∂asl

∑
r

∂xr

∂aij
air−λik

∂xj

∂asl

)
dasl∧daij =

∑
i,j,s,l

(
Rl
ks(A)λik

∑
r

∂xr

∂aij
air

)
dasl∧daij

∑
i,j,s,l

(
∂λik
∂asl

∑
r

∂xr

∂aij
air−λik

∂xj

∂asl
−Rl

ks(A)λik
∑
r

∂xr

∂aij
air

)
dasl ∧ daij = 0. (5.3.7)

Write the previous equation as∑
i,j,s,l

(Γk)
sl
ijda

s
l ∧ daij = 0,

where

(Γk)
sl
ij =

∂λik
∂asl

∑
r

∂xr

∂aij
air − λik

∂xj

∂asl
−Rl

ks(A)λik
∑
r

∂xr

∂aij
air.

Then equation (5.3.7) is satisfied if and only if (Γk)
sl
ij = (Γk)

ij
sl for any given

k ∈ {1, ...,m} and all 1 ≤ i, s ≤ m and 1 ≤ j, l ≤ n. So, we get the erquired

symmetry conditions.

�

Corollary 5.12.1. Suppose that Conditions (5.3.4) are satisfied. Then

(a) Si = STi , for all i = 1, ...,m.

where Sjli is the n× n matrix whose jl-entry is given by

Sjli =
∂xj

∂ail
−Rj

ii(A)
∑
r

∂xr

∂ail
air
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(b) ∂xl

∂aij
+Rj

ki(A)
∑
r

∂xr

∂akl
akr−τik

∑
j′

∂xl

∂ai
j′
akj′
∑
r

∂xr

∂aij
air = λik

(
∂xj

∂akl
−τik

∑
j′

∂xj
′

∂akl
akj′
∑
r

∂xr

∂aij
air

)
,

where τik = (
∑
r,j′

∂xr

∂ai
j′
aira

k
j′)
−1 = ((ai)T (Daix

r)ak)−1.

Proof. If s = i = k then, using the fact that λii = 1, relations (5.3.4) boil down to

the following symmetry conditions

∂xj

∂ail
−Rj

ii(A)
∑
r

∂xr

∂ail
air =

∂xl

∂aij
−Rl

ii(A)
∑
r

∂xr

∂aij
air.

So we get (a). To prove (b), it suffices to take s = k and i 6= k in (5.3.4) which

writes down in this case as

∂λik
∂akl

∑
r

∂xr

∂aij
air−λik

∂xj

∂akl
−Rl

kk(A)λik
∑
r

∂xr

∂aij
air = −∂x

l

∂aij
−Rj

ki(A)
∑
r

∂xr

∂akl
akr . (5.3.8)

Now, multiply both sides of the last equality by akj , summing over j,

∂λik
∂akl

∑
r,j′

∂xr

∂aij′
aira

k
j′ − λik

∑
j′

∂xj
′

∂akl
akj′ −Rl

kk(A)λik
∑
r,j′

∂xr

∂aij′
aira

k
j′

= −
∑
j′

∂xl

∂aij′
akj′ −

∑
j′

Rj′

ki(A)akj′
∑
r

∂xr

∂akl
akr .

But, ∑
j′

Rj′

ki(A)akj′ = 0.

Therefore, we have

∂λik
∂akl

∑
r,j′

∂xr

∂aij′
aira

k
j′ − λik

∑
j′

∂xj
′

∂akl
akj′ −Rl

kk(A)λik
∑
r,j′

∂xr

∂aij′
aira

k
j′ = −

∑
j′

∂xl

∂aij′
akj′ .

Solving to get the following formula

∂λik
∂akl

= λikτik
∑
j′

∂xj
′

∂akl
akj′ + λikR

l
kk(A)− τik

∑
j′

∂xl

∂aij′
akj′ . (5.3.9)
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Substitute back into (5.3.8), we get

λikτik
∑
j′

∂xj
′

∂akl
akj′
∑
r

∂xr

∂aij
air + λikR

l
kk(A)

∑
r

∂xr

∂aij
air − τik

∑
j′

∂xl

∂aij′
akj′
∑
r

∂xr

∂aij
air

−λik
∂xj

∂akl
−Rl

kk(A)λik
∑
r

∂xr

∂aij
air = −∂x

l

∂aij
−Rj

ki(A)
∑
r

∂xr

∂akl
akr .

Then,

λikτik
∑
j′

∂xj
′

∂akl
akj′
∑
r

∂xr

∂aij
air − τik

∑
j′

∂xl

∂aij′
akj′
∑
r

∂xr

∂aij
air − λik

∂xj

∂akl

= −∂x
l

∂aij
−Rj

ki(A)
∑
r

∂xr

∂akl
akr .

Rearranging, this condition can be written as

∂xl

∂aij
+Rj

ki(A)
∑
r

∂xr

∂akl
akr − τik

∑
j′

∂xl

∂aij′
akj′
∑
r

∂xr

∂aij
air

= λik

(
∂xj

∂akl
− τik

∑
j′

∂xj
′

∂akl
akj′
∑
r

∂xr

∂aij
air

)

�

Remark 5.3.1. We can use condition (b) to determine the functions λik.
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5.4 Particular Case: m = n = 2

We consider a multi-constraint maximization problem of the form

max
x

f(x)

such that

C1(A) = a1
1x

1 + a1
2x

2

C2(A) = a2
1x

1 + a2
2x

2.

Define the Lagrangian function

L(x, λ) = f(x) + λ1(C1(A)− (a1
1x

1 + a1
2x

2)) + λ2(C2(A)− (a2
1x

1 + a2
2x

2))

with x ∈ R2
++, and λ ∈ R2

++. We take the derivative with respect to the control

variables x, and the first order conditions for interior maximum are

∂f

∂xj
=

2∑
k=1

λka
k
j , j = 1, 2.

Define the value function of this problem by

V (A) = max
x
{f(x) + λ1(C1(A)− (a1

1x
1 + a1

2x
2))

+λ2(C2(A)− (a2
1x

1 + a2
2x

2))}.

Differentiating the function V (A) with respect to aij, we get

∂V

∂aij
=

2∑
k=1

λk
∂Ck

∂aij
− λixj.

But, DaiC
k = 0 if i 6= k. Then,

∂V

∂aij
= λi

∂Ci

∂aij
− λixj.
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Define a family of differential 1-forms ω1, ω2 by

ωi =
2∑
j=1

(
∂Ci

∂aij
− xj

)
daij.

Differentiating the function ωi with respect to akl

dωi =
2∑
j,l

∂2Ci

∂ail∂a
i
j

dail ∧ daij −
2∑

j,k,l

∂xj

∂akl
dakl ∧ daij.

The coefficients in the first summation are symmetric, so we end up with

dωi = −
2∑

j,k,l

∂xj

∂akl
dakl ∧ daij.

The ith constraint is Ci(A) =
∑2

j=1 a
i
jx
j = ai1x

1 + ai2x
2. Differentiating both sides

of this equality with respect to aij, we obtain

∂Ci

∂aij
=

2∑
r=1

∂xr

∂aij
air + xj

and rearranging the above formula, we get

∂Ci

∂aij
− xj =

2∑
r=1

∂xr

∂aij
air .

Thus,

ωi =
2∑

r,j=1

∂xr

∂aij
airda

i
j .

The necessary and sufficient conditions for mathematical integration in this case

given by:
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Theorem 5.13. Given the family of 1-forms Ω1,Ω2. Then

Ωk ∧ dΩk = 0

if and only if

1. there exist a set of rank one n×m matrices R1, R2. that satisfy the conditions

Rk(a
i)T = δik.

2. for all 1 ≤ i, s ≤ 2 , 1 ≤ j, l ≤ 2 the following conditions are satisfied.

∂λik
∂asl

∑
r

∂xr

∂aij
air − λik

∂xj

∂asl
−Rl

ks(A)λik
∑
r

∂xr

∂aij
air

=
∂λsk
∂aij

∑
r

∂xr

∂asl
asr − λsk

∂xl

∂aij
−Rj

ki(A)λsk
∑
r

∂xr

∂asl
asr. (5.4.1)

5.5 Economic Integration

In this section, we solve the economic integration problem. We start by giving the

following theorem.

Theorem 5.14. Given a function x(A) ∈ Rn
++ be a zero−homogeneous in ai, i =

1, ...,m and a family of strictly positive functions λik , 1 ≤ i, k ≤ m all of class

C2 that satisfies homogeneity conditions (5.6) defined in a neighbourhood V of some

point Ā such that λtiλsk = λsiλtk for all λik, 1 ≤ i, k, s, t ≤ m. Then, there exist

m+1 functions µi, ..., µk and V , defined in a possibly smaller neighbourhood U ⊂ V,

such that µkdV = Ωk if and only if conditions (5.3.4) are satisfied in V.

Proof. Given the functions x(A) and λik, 1 ≤ i, k ≤ m as in the statement of the

theorem. Define a family of 1-forms Ωk, k = 1, ...,m as

Ωk =
m∑
s=1

λskω
s,
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where ωs is the 1-form defined by

ωs =
n∑

r,j=1

∂xr

∂asj
asrda

s
j .

Now, Ωk ∧ dΩk = 0 if and only if there exist two functions µk and Vk such that

Ωk = µkdVk.

But by Lemma(5.7)

Ωi ∧ Ωk = µiµkdVi ∧ dVk = 0.

Therefore, dVk = φik(A)dVi, ∀i, k = 1, ...,m for some function φik. So we can set

dV1 = ... = dVm = dV. �

We have the following result.

Lemma 5.15. Suppose that V (A) is the value function, x(A) is a solution and λ(A)

is the associated vector of Lagrange multipliers for problem (P ),

C(A) = Ax(A).

Then we have

D2
aiV (A) = λi(A)(D2

aiC
i(ai)−Daix(A)) +Daiλi(A)(DaiC

i(ai)− x)T . (5.5.1)

Moreover, the n × n matrix D2
aiC

i(ai) − Daix(A) is symmetric and positive semi-

definite on {DaiV }⊥.

Proof.

DaiV = λi(DaiC
i(ai)− x). (5.5.2)

Differentiating equation (5.5.2), and we get the first order conditions

D2
aiV (A) = λi(A)(D2

aiC
i(ai)−Daix(A)) +Daiλ(A)(DaiC

i(ai)− x)T .

and the positively semi-definite result follows from the fact the value function V

is quasi-convex and the Ci(ai) are convex with respect to ai, and symmetric by

summation of two symmetric matrix.

�
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Lemma 5.16. Let x(A) be a solution of problem (P) and C(A) = Ax(A). Then∑
r

∂2xr

∂akl ∂a
i
j

asr +
∂xl

∂aij
δsk +

∂xj

∂akl
δis =

∂2Cs

∂akl ∂a
i
j

δisδ
k
s . (5.5.3)

Moreover, if Ci(ai) is a convex function then the n× n matrix Mi where

Mi
jl =

∑
r

∂2xr

∂ail∂a
i
j

air +
∂xl

∂aij k
+
∂xj

∂ail

is symmetric and positive semi-definite.

Proof. The sth constraint takes the form

(as)Tx(A) = Cs(as).

Differentiating both sides of this equality with respect to aij,

∂Cs(as)

∂aij
δis =

n∑
r=1

∂xr

∂aij
asr + xjδis. (5.5.4)

Differentiating the equation (5.5.4) with respect to akl ,∑
r

∂2xr

∂akl ∂a
i
j

asr +
∂xl

∂aij
δsk +

∂xj

∂akl
δis =

∂2Cs

∂akl ∂a
i
j

δisδ
k
s .

Thus, we have equation (5.5.3). Positivity follows from the convexity of Ci(ai) by

theorem 2.4, and symmetric by summation of two symmetric matrix. �

Lemma 5.17. Let x(A) and C(A) = Ax(A). Then the matrix T i defined by

T ijl =
∑
r

∂2xr

∂ail∂a
i
j

air +
∂xl

∂aij
.

is symmetric and positive semi−definite on the subspace {(ai)TDaix}⊥.

Proof. From the above equation (5.5.3) we have T i + Daix = D2
aiC

i. Using this

equation and the result (5.1.3), we get

D2
aiV = λiT

i +
1

λi
(Daiλi)(DaiV )T .
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The result follows from the last equality, the quasi-convexity of V with respect to

ai and the result that

DaiV = λi((a
i)TDaix).

�

The following theorem solves the economic integration problem.

Theorem 5.18. Let x(A) ∈ Rn
++, λik(A) > 0 be given functions defined on a

neighbourhood U of some point Ā ∈ Rmn
++ where x is zero−homogeneous in ai, and

λik satisfy homogeneity conditions (5.6). Define C(A) = Ax(A). Suppose that the

following conditions are satisfied in U for all i, k = 1, ...,m.

(a) λtiλsk = λsiλtk for all 1 ≤ i, k, s, t ≤ m.

(b)
∂λik
∂asl

∑
r

∂xr

∂aij
air − λik

∂xj

∂asl
−Rl

ks(A)λik
∑
r

∂xr

∂aij
air

=
∂λsk
∂aij

∑
r

∂xr

∂asl
asr − λsk

∂xl

∂aij
−Rj

ki(A)λsk
∑
r

∂xr

∂asl
asr.

(c) The matrix Mi is positive semi-definite.

(d) The restriction of the matrix T i to {(ai)TDaix}⊥ is positive semi−definite.

Then, there exist positive functions λ1, ..., λm and a function V which is quasi-convex

with respect to ai for each i, defined in a neighbourhood V ⊂ U such that

DaiV = λi(DaiC
i − x).

Proof. The condition (c) implies that the function Ci(ai) is convex. Consider the

family of 1-forms Ω1, ...,Ωm defined by

Ωk =
∑
i,j

λik

(
∂Ci

∂aij
− xj

)
daij.

=
m∑
i=1

λik

n∑
r,j=1

∂xr

∂aij
airda

i
j.
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Conditions (b) are equivalent to Ωk ∧ dΩk = 0. Using Darboux theorem, the last

equation is satisfied if and only if there exist two functions µk and V , where µ is

1−homogeneous, and V is a zero−homogeneous such that µkdV = Ωk. Note that V

is independent of k. Therefore, we have

µk
∂V

∂aij
= λik

n∑
r,j=1

∂xr

∂aij
air. (5.5.5)

Now, multiply both sides of the last equation (5.5.5) by akj , and adding up

µk
∑
j

∂V

∂aij
akj = λik

n∑
r,j=1

∂xr

∂aij
air a

k
j .

Using τik = (
∑
r,j′

∂xr

∂ai
j′
aira

k
j′)
−1, where τik is homogeneous of degree -1 in ai, homoge-

neous of degree 0 in ak, and homogeneous of degree -1 in ak
′
, ∀ k′ 6= i, k.

We can write

µk =
λik
τik

1

(ak)TDaiV
, i 6= k.

It follows that

τik µk (ak)TDaiV = λik(A) > 0 (5.5.6)

for all A in sufficiently small neighbourhood of some point Ā. Substitute for λik in

(5.5.5), we get

µkdV =
∑
i

µkτik((a
k)TDaiV )

(
∂Ci

∂aij
− xj

)
daij.

Canceling µk of the last equation, and setting

τik((a
k)TDaiV ) =

∑
j

∂V
∂aij
akj∑

r,j

∂xr

∂aij
akra

i
r

.

Define a family of functions λi, 1 ≤ i ≤ m by

λi = τik((a
k)TDaiV ), for some k 6= i.

It follows from (5.5.6) that λi > 0 in a neighbourhood of Ā.

Then

dV =
m∑
i=1

λi

(
∂Ci

∂aij
− xj

)
daij.
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It remains to prove that the function V has the required positivity conditions. Note

that
∂2V

∂asl ∂a
i
j

=
m∑
i=1

λi

( n∑
r=1

∂2xr

∂asl ∂a
i
j

air +
∂xl

∂aijδ
i
s

)
+
∂λi
∂asl

n∑
r=1

∂xr

∂aij
air.

Using relations (5.5.3), we can write D2
AV as

∂2V

∂asl ∂a
s
j

= λsT
s
jl +

∂λs
∂asl

n∑
r=1

∂xr

∂asj
asr. (5.5.7)

Take a vector % ∈ {DasV }⊥; that is, % satisfies the condition

n∑
j=1

n∑
r=1

∂xr

∂asj
asr%j = 0.

It follows that
n∑

j,l=1

∂2V

∂asl ∂a
s
j

%j%l = λs

n∑
j,l=1

T sjl%j%l ≥ 0.

We conclude that the matrix D2
asV is positive semi−definite on {DasV }⊥; that is,

V is quasi-convex with respect to as. �
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5.6 Duality

After solving the mathematical problem, we get functions λ1, ...λm and V that have

the required properties. The question now is how to get a concave (or quasi-concave)

objective function.

In the single constraint case, if V (a) is strongly convex (meaning that the Hes-

sian is positive), then f(x) = min
a
{V (a)|a′x ≤ c(a)} is quasi-convex. The objective

function can be obtained from the value function using the duality relation

f(x) = min{V (A)|(ai)Tx(A) = Ci(A)}.

The function f is not necessarily quasi-concave.

However, we can introduce a class of functions that is stable under duality. We

need to define the following space

E(A) = {v = (v1, ..., vm) ∈ Rmn|(vi)TDaiV = 0, i = 1, ...,m}.

We now recall the definitions of QE-convex and QE-concave.

Definition 31. Let U ⊂ Rn
++ and V ⊂ Rmn

++. Suppose that C(A) is a convex

mapping. Then,

1. We say that a function f(x) is locally QE-concave if

∀x∗ ∈ U ,∃A∗ ∈ V such that f(x∗) = max
x∈U
{f(x)|A∗x = C(A∗)}.

2. We say that a function V (A) is locally QE-convex if

∀A∗ ∈ V ,∃x∗ ∈ U such that V (A∗) = min
A∈V
{V (A)|Ax∗ = C(A)}.

We have the following theorems.

Theorem 5.19. The value function V (A) is locally QE-convex if D2
AV is positive

definite on E(A).
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Proof. Let V be a neighbourhood of a point Ā in which the function V is defined.

The assumption that D2
pV is positive definite on E(A) for all A ∈ V implies that if

v = (v1, ..., vm) ∈ E such that (a1 + v1, ..., am + vm) ∈ V then

V (a1 + v1, ..., am + vm) > V (a1, ..., am). (5.6.1)

To show that V is locally QE-convex, suppose that A∗ is given. Let x∗ be such

that

V (A∗) = min
A
{V (A)|Ax∗ = C(A)}.

Take

x∗(A) = DaiC
i(ai∗)− 1

λi(A∗)
DaiV (A∗)

and

λi(A
∗) = τik(A

∗)((ak∗)TDaiV (A∗)),

where τ−1
ik = ((ai)T (Daix

r)ak).

The point A∗ satisfies the first order optimality conditions. Its clear that

A∗x∗(A∗) = C(ai∗). The point A∗ satisfies the second order condition for mini-

mum which is the positive definiteness of D2
AV on E(A∗). �

Now, we need to show that the function

f(x) = min
A∈V
{V (A)|Ax = C(A)}

is locally QE-concave if V is locally QE-convex. Let f(x) be a given locally QE-

concave fuction. Define a function V : V ⊂ Rmn
++ → R by

V (A) = max
x∈U
{f(x)|Ax = C(A)}

Define also the function f ∗(x) = minA∈V{V (A)|Ax = C(A)}.

Suppose that the function V (A) is defined in a neighbourhood of some point

Ā ∈ Rmn
++, then U = {x ∈ Rn

++|Ax = C(A), ∀A ∈ V}.
The following theorem establishes duality between f and V .
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Theorem 5.20. [1] If V is locally QE-convex then f ∗ is locally QE-concave. More-

over, f ∗ = f throughout U if f is locally QE-concave.

Proof. Let x∗ ∈ U such that A∗ ∈ argmin{V (A)|Ax∗ = C(A), A ∈ V}. Such A∗

exists because V is locally QE-convex. We want to show that

x∗ ∈ argmax{f ∗(x)|A∗x = C(A∗), x ∈ U}.

The inequality f ∗ ≤ V (A∗) = f ∗(x∗) implies that f ∗ attains its maximum under

the constraints A∗x = C(A∗) at x∗ we conclude that f ∗ is locally QE-concave.

Now, we show that f ∗ = f on U . let x∗ ∈ U such that there exists A∗ such that

x∗ ∈ argmax{f ∗(x)|A∗x = C(A∗), x ∈ U}. Such x∗ exists because f is locally QE-

concave. Therefore, V (A) ≥ V (A∗) = f(x∗) for all A ∈ V such that Ax∗ = C(A).

This means that V attains its minimum under Ax∗ = C(A) at A∗, from which, by

definition, f ∗(x∗) = V (A∗) = f(x∗). This implies f ∗(x∗) = f(x∗), because x∗ is an

arbitrary point in U , we conclude that U∗(x) = U(x), ∀x ∈ U . We have shown at

the same time, that if A∗ is the solution or belongs to the solution set of

min
A
{V (A)|Ax = C(A), A ∈ V},

then x∗(A∗) is the solution, or belong to the solution set of

max
x
{f ∗(x)|A∗x = C(A∗), x ∈ U},

and conversely. �

Equation (5.5.7) implies that, on the space E(A), we have for any fixed k0 ∈
{1, ...,m} :

1

λk0

∂2V

∂akl ∂a
i
j

= λik0T
i
jl +

1

λk0

∂λi
∂akl

∑
r

∂xr

∂aij
air = Kik

jl .

Clearly, the assumption of positive definiteness of D2V on the subspace E(A) can

now be stated in terms of observable functions, namely λik0 and x. Moreover,

it is a stronger condition than the assumption of positive definiteness of T i on

{(ai)TDaix}⊥ as required in theorem . To put all pieces of the puzzle together, we

state the following theorem that gives the solution of the inverse problem
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Theorem 5.21. Let x(A) ∈ Rn
++, λik(A) > 0 be given functions defined on a

neighbourhood U of some point Ā ∈ Rmn
++. Define C(A) = Ax(A). Suppose that the

following conditions are satisfied in U for all i, k = 1, ...,m.

(a) λtiλsk = λsiλtk for all 1 ≤ i, k, s, t ≤ m.

(b)
∂λik
∂asl

∑
r

∂xr

∂aij
air − λik

∂xj

∂asl
−Rl

ks(A)λik
∑
r

∂xr

∂aij
air

=
∂λsk
∂aij

∑
r

∂xr

∂asl
asr − λsk

∂xl

∂aij
−Rj

ki(A)λsk
∑
r

∂xr

∂asl
asr.

(c) The matrix Mi is positive semi-definite.

(d) The restriction of the tensor Kik
jl to the subspace E(A) is positive definite.

Then, there exists a locally QE-concave function f(x) such that

x(A) ∈ argmax{f(x)|Ax = C(A)}.
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[8] Ekeland, I. and Djitté, N. (2006). An inverse problem in the economic theory of

demand. Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 23(2),

pp.269-281.

[9] Gray, A. (1993). Modern differential geometry of curves and surfaces. Boca

Raton: CRC Press.



Bibliography 61

[10] Marsden, J.E.,Ratiu, T.S. (1998 ). Introduction to Machanies and Symmetry.

Springer.

[11] Mas-Colell, A., Whinston, M. and Green, J. (1995). Microeconomic theory. New

York: Oxford University Press.


	Introduction
	Basic Definitions and Results
	Exterior Differential Calculus
	Introduction
	Differential Manifolds
	Manifolds and Atlases
	Tangent Vectors
	Differentials and Covectors

	Differential Forms
	Tensor and Wedge Products
	Examples of Algebraic Computation of Products
	Exterior Derivative
	Examples of Algebraic Computation of Derivatives
	Lie Derivative
	Integrability of Homogeneous Differential Forms

	 Single Constraint and Non-Homogeneous Models
	Solution of The Inverse Problem-Main Results
	Setting up The Model
	Preliminary Results
	Mathematical Integration: Necessary and Sufficient Conditions
	Particular Case: m=n=2
	Economic Integration
	Duality


